Class

com.salesforce.op.dsl.RichMapFeature

RichTextAreaMapFeature

Related Doc: package RichMapFeature

Permalink

implicit class RichTextAreaMapFeature extends AnyRef

Enrichment functions for TextAreaMap Features (they are hashed by default instead of being pivoted)

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RichTextAreaMapFeature
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RichTextAreaMapFeature(f: FeatureLike[TextAreaMap])

    Permalink

    f

    FeatureLike

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. val f: FeatureLike[TextAreaMap]

    Permalink

    FeatureLike

  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. def smartVectorize(maxCategoricalCardinality: Int, numHashes: Int, autoDetectLanguage: Boolean, minTokenLength: Int, toLowercase: Boolean, cleanText: Boolean = TransmogrifierDefaults.CleanText, cleanKeys: Boolean = TransmogrifierDefaults.CleanKeys, trackNulls: Boolean = TransmogrifierDefaults.TrackNulls, topK: Int = TransmogrifierDefaults.TopK, minSupport: Int = TransmogrifierDefaults.MinSupport, unseenName: String = TransmogrifierDefaults.OtherString, hashWithIndex: Boolean = ..., binaryFreq: Boolean = TransmogrifierDefaults.BinaryFreq, prependFeatureName: Boolean = ..., autoDetectThreshold: Double = TextTokenizer.AutoDetectThreshold, hashSpaceStrategy: HashSpaceStrategy = ..., defaultLanguage: Language = TextTokenizer.DefaultLanguage, hashAlgorithm: HashAlgorithm = ..., others: Array[FeatureLike[TextAreaMap]] = Array.empty): FeatureLike[OPVector]

    Permalink

    Vectorize textarea map features by treating low cardinality text features as categoricals and applying hashing trick to high caridinality ones.

    Vectorize textarea map features by treating low cardinality text features as categoricals and applying hashing trick to high caridinality ones.

    maxCategoricalCardinality

    max cardinality for a text feature to be treated as categorical

    numHashes

    number of features (hashes) to generate

    autoDetectLanguage

    indicates whether to attempt language detection

    minTokenLength

    minimum token length, >= 1.

    toLowercase

    indicates whether to convert all characters to lowercase before analyzing

    cleanText

    indicates whether to ignore capitalization and punctuation

    cleanKeys

    clean map keys before pivoting

    trackNulls

    indicates whether or not to track null values in a separate column.

    topK

    number of most common elements to be used as categorical pivots

    minSupport

    minimum number of occurrences an element must have to appear in pivot

    unseenName

    name to give indexes which do not have a label name associated with them

    hashWithIndex

    include indices when hashing a feature that has them (OPLists or OPVectors)

    binaryFreq

    if true, term frequency vector will be binary such that non-zero term counts will be set to 1.0

    prependFeatureName

    if true, prepends a input feature name to each token of that feature

    autoDetectThreshold

    Language detection threshold. If none of the detected languages have confidence greater than the threshold then defaultLanguage is used.

    hashSpaceStrategy

    strategy to determine whether to use shared hash space for all included features

    defaultLanguage

    default language to assume in case autoDetectLanguage is disabled or failed to make a good enough prediction.

    hashAlgorithm

    hash algorithm to use

    others

    additional text features

    returns

    result feature of type Vector

  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  18. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  19. def vectorize(cleanText: Boolean, cleanKeys: Boolean = TransmogrifierDefaults.CleanKeys, shouldPrependFeatureName: Boolean = ..., whiteListKeys: Array[String] = Array.empty, blackListKeys: Array[String] = Array.empty, others: Array[FeatureLike[TextAreaMap]] = Array.empty, trackNulls: Boolean = TransmogrifierDefaults.TrackNulls, numHashes: Int = ..., hashSpaceStrategy: HashSpaceStrategy = ...): FeatureLike[OPVector]

    Permalink

    Apply TextMapVectorizer on any OPMap that has string values

    Apply TextMapVectorizer on any OPMap that has string values

    cleanText

    clean text before pivoting

    cleanKeys

    clean map keys before pivoting

    shouldPrependFeatureName

    whether or not to prepend feature name hash to the tokens before hashing

    whiteListKeys

    keys to whitelist

    blackListKeys

    keys to blacklist

    others

    other features of the same type

    trackNulls

    option to keep track of values that were missing

    numHashes

    size of hash space

    hashSpaceStrategy

    strategy to determine whether to use shared hash space for all included features

    returns

    an OPVector feature

  20. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped