Object

com.salesforce.op.stages.impl.regression

RegressionModelSelector

Related Doc: package regression

Permalink

object RegressionModelSelector extends ModelSelectorFactory with Product with Serializable

A factory for Regression Model Selector

Linear Supertypes
Serializable, Serializable, Product, Equals, ModelSelectorFactory, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RegressionModelSelector
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. ModelSelectorFactory
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ModelDefaults[M <: ModelsToTry] extends AnyRef

    Permalink

    Default model types and model parameters for problem type

    Default model types and model parameters for problem type

    Definition Classes
    ModelSelectorFactory

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. object Defaults extends ModelDefaults[RegressionModelsToTry] with Product with Serializable

    Permalink

    Default model types and model parameters for problem type

  5. def addDefaultEvaluators(evaluators: Seq[OpEvaluatorBase[_ <: EvaluationMetrics]], defaultEvaluators: Seq[OpEvaluatorBase[_ <: EvaluationMetrics]]): Seq[OpEvaluatorBase[_ <: EvaluationMetrics]]

    Permalink
    Attributes
    protected
    Definition Classes
    ModelSelectorFactory
  6. def apply(): ModelSelector[ModelType, EstimatorType]

    Permalink

    Creates a new Regression Model Selector with a Cross Validation

  7. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. def selector(validator: OpValidator[ModelType, EstimatorType], splitter: Option[Splitter], trainTestEvaluators: Seq[OpEvaluatorBase[_ <: EvaluationMetrics]], modelTypesToUse: Seq[ModelsToTry], modelsAndParameters: Seq[(EstimatorType, Array[ParamMap])], modelDefaults: ModelDefaults[_ <: ModelsToTry]): ModelSelector[ModelType, EstimatorType]

    Permalink

    Create the model selector for specified interface

    Create the model selector for specified interface

    validator

    training split of cross validator

    splitter

    data prep class

    trainTestEvaluators

    evaluation to do on data

    modelTypesToUse

    list of models to use

    modelsAndParameters

    sequence of models and parameters to explore

    modelDefaults

    default model types and model parameters for problem type

    returns

    model selector with these settings

    Attributes
    protected
    Definition Classes
    ModelSelectorFactory
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  19. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. def withCrossValidation(dataSplitter: Option[DataSplitter] = Option(DataSplitter()), numFolds: Int = ValidatorParamDefaults.NumFolds, validationMetric: OpRegressionEvaluatorBase[_ <: EvaluationMetrics] = Evaluators.Regression.rmse(), trainTestEvaluators: Seq[OpRegressionEvaluatorBase[_ <: EvaluationMetrics]] = Seq(new OpRegressionEvaluator), seed: Long = ValidatorParamDefaults.Seed, parallelism: Int = ValidatorParamDefaults.Parallelism, modelTypesToUse: Seq[RegressionModelsToTry] = Defaults.modelTypesToUse, modelsAndParameters: Seq[(EstimatorType, Array[ParamMap])] = Seq.empty, maxWait: Duration = ValidatorParamDefaults.MaxWait): ModelSelector[ModelType, EstimatorType]

    Permalink

    Creates a new Regression Model Selector with a Cross Validation

    Creates a new Regression Model Selector with a Cross Validation

    dataSplitter

    instance that will split the data into training set and test set

    numFolds

    number of folds for cross validation (>= 2)

    validationMetric

    metric name in evaluation: RMSE, R2 etc

    trainTestEvaluators

    List of evaluators applied on training + holdout data for evaluation. Default is the standard OpRegressionEvaluator.

    seed

    random seed

    parallelism

    level of parallelism used to schedule a number of models to be trained/evaluated so that the jobs can be run concurrently

    modelTypesToUse

    list of model types to run grid search on must from supported types in RegressionModelsToTry (OpLinearRegression, OpDecisionTreeRegressor, OpRandomForestRegressor, OpGBTRegressor, OpGeneralizedLinearRegression)

    modelsAndParameters

    pass in an explicit list pairs of estimators and the accompanying hyperparameters to for model selection Seq[(EstimatorType, Array[ParamMap])] where Estimator type must be an Estimator that takes in a label (RealNN) and features (OPVector) and returns a prediction (Prediction)

    maxWait

    maximum allowable time to wait for a model to finish running (default is 1 day)

    returns

    Regression Model Selector with a Cross Validation

  23. def withTrainValidationSplit(dataSplitter: Option[DataSplitter] = Option(DataSplitter()), trainRatio: Double = ValidatorParamDefaults.TrainRatio, validationMetric: OpRegressionEvaluatorBase[_ <: EvaluationMetrics] = Evaluators.Regression.rmse(), trainTestEvaluators: Seq[OpRegressionEvaluatorBase[_ <: EvaluationMetrics]] = Seq(new OpRegressionEvaluator), seed: Long = ValidatorParamDefaults.Seed, parallelism: Int = ValidatorParamDefaults.Parallelism, modelTypesToUse: Seq[RegressionModelsToTry] = Defaults.modelTypesToUse, modelsAndParameters: Seq[(EstimatorType, Array[ParamMap])] = Seq.empty, maxWait: Duration = ValidatorParamDefaults.MaxWait): ModelSelector[ModelType, EstimatorType]

    Permalink

    Creates a new Regression Model Selector with a Train Validation Split

    Creates a new Regression Model Selector with a Train Validation Split

    dataSplitter

    instance that will split the data into training set and test set

    trainRatio

    ratio between training set and validation set (>= 0 && <= 1)

    validationMetric

    metric name in evaluation: RMSE, R2 etc

    trainTestEvaluators

    List of evaluators applied on training + holdout data for evaluation. Default is the standard OpRegressionEvaluator.

    seed

    random seed

    parallelism

    level of parallelism used to schedule a number of models to be trained/evaluated so that the jobs can be run concurrently

    modelTypesToUse

    list of model types to run grid search on must from supported types in RegressionModelsToTry (OpLinearRegression, OpDecisionTreeRegressor, OpRandomForestRegressor, OpGBTRegressor, OpGeneralizedLinearRegression)

    modelsAndParameters

    pass in an explicit list pairs of estimators and the accompanying hyperparameters to for model selection Seq[(EstimatorType, Array[ParamMap])] where Estimator type must be an Estimator that takes in a label (RealNN) and features (OPVector) and returns a prediction (Prediction)

    maxWait

    maximum allowable time to wait for a model to finish running (default is 1 day)

    returns

    Regression Model Selector with a Train Validation Split

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from ModelSelectorFactory

Inherited from AnyRef

Inherited from Any

Ungrouped