Class

com.salesforce.op.dsl.RichVectorFeature

RichVectorFeature

Related Doc: package RichVectorFeature

Permalink

implicit class RichVectorFeature extends AnyRef

Enrichment functions for Vector Feature

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RichVectorFeature
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RichVectorFeature(f: FeatureLike[OPVector])

    Permalink

    f

    FeatureLike

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def dropIndicesBy(matchFn: (OpVectorColumnMetadata) ⇒ Boolean): FeatureLike[OPVector]

    Permalink

    Allows columns to be dropped from a feature vector based on properties of the metadata about what is contained in each column (will work only on vectors) created with OpVectorMetadata

    Allows columns to be dropped from a feature vector based on properties of the metadata about what is contained in each column (will work only on vectors) created with OpVectorMetadata

    matchFn

    function that goes from OpVectorColumnMetadata to boolean for dropping columns (cases that evaluate to true will be dropped)

    returns

    new Vector with columns removed by function

  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. val f: FeatureLike[OPVector]

    Permalink

    FeatureLike

  10. def filterMinVariance(minVariance: Double = MinVarianceFilter.MinVariance, removeBadFeatures: Boolean = MinVarianceFilter.RemoveBadFeatures): FeatureLike[OPVector]

    Permalink

    Apply filter that removes computed features that have variance <= minVariance

  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. def idf(minDocFreq: Int = 0): FeatureLike[OPVector]

    Permalink

    Apply inverse-document frequency transformation.

    Apply inverse-document frequency transformation.

    minDocFreq

    minimum number of documents in which a term should appear for filtering (default: 0)

  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. def lda(checkpointInterval: Int = 10, k: Int = 10, maxIter: Int = 10, optimizer: String = "online", subsamplingRate: Double = 0.05, seed: Long = util.Random.nextLong()): FeatureLike[OPVector]

    Permalink

    Apply Latent Dirichlet Allocation to compute topic distributions

    Apply Latent Dirichlet Allocation to compute topic distributions

    checkpointInterval

    num of iterations between two consecutive checkpoints, -1 means disabled

    k

    number of topics (clusters) to infer

    maxIter

    maximum number of iterations

    optimizer

    optimizer or inference algorithm used to estimate the LDA model, "online" or "em"

    subsamplingRate

    fraction of the corpus to be sampled and used in mini-batch gradient descent

  17. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. def randomForest(label: FeatureLike[RealNN], maxDepth: Int = 5, maxBins: Int = 32, minInstancePerNode: Int = 1, minInfoGain: Double = 0.0, subSamplingRate: Double = 1.0, numTrees: Int = 20, impurity: Impurity = Impurity.Entropy, seed: Long = util.Random.nextLong, thresholds: Array[Double] = Array.empty): FeatureLike[Prediction]

    Permalink

    Apply Random Forest classifier

  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  22. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped