Class

com.salesforce.op.stages.impl.classification

OpLinearSVC

Related Doc: package classification

Permalink

class OpLinearSVC extends OpPredictorWrapper[LinearSVC, LinearSVCModel] with OpLinearSVCParams

Wrapper for spark Linear SVC org.apache.spark.ml.classification.LinearSVC

Linear Supertypes
OpLinearSVCParams, LinearSVCParams, HasThreshold, HasAggregationDepth, HasWeightCol, HasStandardization, HasTol, HasFitIntercept, HasMaxIter, HasRegParam, ClassifierParams, HasRawPredictionCol, PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, OpPredictorWrapper[LinearSVC, LinearSVCModel], SparkWrapperParams[LinearSVC], OpPipelineStage2[RealNN, OPVector, Prediction], HasOut[Prediction], HasIn2, HasIn1, OpPipelineStage[Prediction], OpPipelineStageBase, MLWritable, OpPipelineStageParams, InputParams, Estimator[OpPredictorWrapperModel[LinearSVCModel]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OpLinearSVC
  2. OpLinearSVCParams
  3. LinearSVCParams
  4. HasThreshold
  5. HasAggregationDepth
  6. HasWeightCol
  7. HasStandardization
  8. HasTol
  9. HasFitIntercept
  10. HasMaxIter
  11. HasRegParam
  12. ClassifierParams
  13. HasRawPredictionCol
  14. PredictorParams
  15. HasPredictionCol
  16. HasFeaturesCol
  17. HasLabelCol
  18. OpPredictorWrapper
  19. SparkWrapperParams
  20. OpPipelineStage2
  21. HasOut
  22. HasIn2
  23. HasIn1
  24. OpPipelineStage
  25. OpPipelineStageBase
  26. MLWritable
  27. OpPipelineStageParams
  28. InputParams
  29. Estimator
  30. PipelineStage
  31. Logging
  32. Params
  33. Serializable
  34. Serializable
  35. Identifiable
  36. AnyRef
  37. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OpLinearSVC(uid: String = UID[OpLinearSVC])

    Permalink

    uid

    stage uid

Type Members

  1. final type InputFeatures = (FeatureLike[RealNN], FeatureLike[OPVector])

    Permalink

    Input Features type

    Input Features type

    Definition Classes
    OpPipelineStage2OpPipelineStageInputParams
  2. final type OutputFeatures = FeatureLike[Prediction]

    Permalink
    Definition Classes
    OpPipelineStageOpPipelineStageBase

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final val aggregationDepth: IntParam

    Permalink
    Definition Classes
    HasAggregationDepth
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. final def checkInputLength(features: Array[_]): Boolean

    Permalink

    Checks the input length

    Checks the input length

    features

    input features

    returns

    true is input size as expected, false otherwise

    Definition Classes
    OpPipelineStage2InputParams
  8. def checkSerializable: Try[Unit]

    Permalink

    Check if the stage is serializable

    Check if the stage is serializable

    returns

    Failure if not serializable

    Definition Classes
    OpPipelineStageBase
  9. final def clear(param: Param[_]): OpLinearSVC.this.type

    Permalink
    Definition Classes
    Params
  10. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. final def copy(extra: ParamMap): OpLinearSVC.this.type

    Permalink

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    Note: that the convention in spark is to have the uid be a constructor argument, so that copies will share a uid with the original (developers should follow this convention).

    extra

    new parameters want to add to instance

    returns

    a new instance with the same uid

    Definition Classes
    OpPipelineStageBase → Params
  12. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  13. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  14. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  16. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  17. def explainParams(): String

    Permalink
    Definition Classes
    Params
  18. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  19. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  20. final val featuresCol: Param[String]

    Permalink
    Definition Classes
    HasFeaturesCol
  21. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. def fit(dataset: Dataset[_]): OpPredictorWrapperModel[LinearSVCModel]

    Permalink

    Function that fits the binary model

    Function that fits the binary model

    Definition Classes
    OpPredictorWrapper → Estimator
  23. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[OpPredictorWrapperModel[LinearSVCModel]]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  24. def fit(dataset: Dataset[_], paramMap: ParamMap): OpPredictorWrapperModel[LinearSVCModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  25. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OpPredictorWrapperModel[LinearSVCModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  26. final val fitIntercept: BooleanParam

    Permalink
    Definition Classes
    HasFitIntercept
  27. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  28. final def getAggregationDepth: Int

    Permalink
    Definition Classes
    HasAggregationDepth
  29. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  30. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  31. final def getFeaturesCol: String

    Permalink
    Definition Classes
    HasFeaturesCol
  32. final def getFitIntercept: Boolean

    Permalink
    Definition Classes
    HasFitIntercept
  33. def getInputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control input columns for Spark stage

    Gets names of parameters that control input columns for Spark stage

    Definition Classes
    SparkWrapperParams
  34. final def getInputFeature[T <: FeatureType](i: Int): Option[FeatureLike[T]]

    Permalink

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  35. final def getInputFeatures(): Array[OPFeature]

    Permalink

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  36. final def getInputSchema(): StructType

    Permalink
    Definition Classes
    OpPipelineStageParams
  37. final def getLabelCol: String

    Permalink
    Definition Classes
    HasLabelCol
  38. final def getMaxIter: Int

    Permalink
    Definition Classes
    HasMaxIter
  39. final def getMetadata(): Metadata

    Permalink
    Definition Classes
    OpPipelineStageParams
  40. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  41. def getOutput(): FeatureLike[Prediction]

    Permalink

    Output features that will be created by this stage

    Output features that will be created by this stage

    returns

    feature of type OutputFeatures

    Definition Classes
    HasOut → OpPipelineStageBase
  42. def getOutputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control output columns for Spark stage

    Gets names of parameters that control output columns for Spark stage

    Definition Classes
    SparkWrapperParams
  43. final def getOutputFeatureName: String

    Permalink

    Name of output feature (i.e.

    Name of output feature (i.e. column created by this stage)

    Definition Classes
    OpPipelineStage
  44. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  45. final def getPredictionCol: String

    Permalink
    Definition Classes
    HasPredictionCol
  46. final def getRawPredictionCol: String

    Permalink
    Definition Classes
    HasRawPredictionCol
  47. final def getRegParam: Double

    Permalink
    Definition Classes
    HasRegParam
  48. def getSparkMlStage(): Option[LinearSVC]

    Permalink

    Method to access the spark stage being wrapped

    Method to access the spark stage being wrapped

    returns

    Option of spark ml stage

    Definition Classes
    SparkWrapperParams
  49. def getStageSavePath(): Option[String]

    Permalink

    Gets a save path for wrapped spark stage

    Gets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  50. final def getStandardization: Boolean

    Permalink
    Definition Classes
    HasStandardization
  51. def getThreshold: Double

    Permalink
    Definition Classes
    HasThreshold
  52. final def getTol: Double

    Permalink
    Definition Classes
    HasTol
  53. final def getTransientFeature(i: Int): Option[TransientFeature]

    Permalink

    Gets an input feature at index i

    Gets an input feature at index i

    i

    input index

    returns

    maybe an input feature

    Definition Classes
    InputParams
  54. final def getTransientFeatures(): Array[TransientFeature]

    Permalink

    Gets the input Features

    Gets the input Features

    returns

    input features

    Definition Classes
    InputParams
  55. final def getWeightCol: String

    Permalink
    Definition Classes
    HasWeightCol
  56. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  57. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  58. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  59. final def in1: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn1
  60. final def in2: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn2
  61. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  62. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  63. final def inputAsArray(in: InputFeatures): Array[OPFeature]

    Permalink

    Function to convert InputFeatures to an Array of FeatureLike

    Function to convert InputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStage2InputParams
  64. val inputParam1Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  65. val inputParam2Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  66. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  67. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  68. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  69. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  70. final val labelCol: Param[String]

    Permalink
    Definition Classes
    HasLabelCol
  71. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  72. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  75. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  77. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  78. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  82. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  83. final val maxIter: IntParam

    Permalink
    Definition Classes
    HasMaxIter
  84. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  85. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  86. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  87. def onGetMetadata(): Unit

    Permalink

    Function to be called on getMetadata

    Function to be called on getMetadata

    Attributes
    protected
    Definition Classes
    OpPipelineStageParams
  88. def onSetInput(): Unit

    Permalink

    Function to be called on setInput

    Function to be called on setInput

    Attributes
    protected
    Definition Classes
    OpLinearSVCInputParams
  89. val operationName: String

    Permalink

    Short unique name of the operation this stage performs

    Short unique name of the operation this stage performs

    returns

    operation name

    Definition Classes
    OpPredictorWrapperOpPipelineStageBase
  90. final def outputAsArray(out: OutputFeatures): Array[OPFeature]

    Permalink

    Function to convert OutputFeatures to an Array of FeatureLike

    Function to convert OutputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStageOpPipelineStageBase
  91. def outputFeatureUid: String

    Permalink
    Attributes
    protected[com.salesforce.op]
    Definition Classes
    OpPipelineStage2OpPipelineStage
  92. def outputIsResponse: Boolean

    Permalink

    Should output feature be a response? Yes, if any of the input features are.

    Should output feature be a response? Yes, if any of the input features are.

    returns

    true if the the output feature should be a response

    Definition Classes
    OpPipelineStage
  93. val outputParamName: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  94. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  95. final val predictionCol: Param[String]

    Permalink
    Definition Classes
    HasPredictionCol
  96. val predictor: LinearSVC

    Permalink

    the predictor to wrap

    the predictor to wrap

    Definition Classes
    OpPredictorWrapper
  97. final val rawPredictionCol: Param[String]

    Permalink
    Definition Classes
    HasRawPredictionCol
  98. final val regParam: DoubleParam

    Permalink
    Definition Classes
    HasRegParam
  99. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  100. final def set(paramPair: ParamPair[_]): OpLinearSVC.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  101. final def set(param: String, value: Any): OpLinearSVC.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  102. final def set[T](param: Param[T], value: T): OpLinearSVC.this.type

    Permalink
    Definition Classes
    Params
  103. def setAggregationDepth(value: Int): OpLinearSVC.this.type

    Permalink

    Suggested depth for treeAggregate (greater than or equal to 2).

    Suggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2.

  104. final def setDefault(paramPairs: ParamPair[_]*): OpLinearSVC.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  105. final def setDefault[T](param: Param[T], value: T): OpLinearSVC.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  106. def setFitIntercept(value: Boolean): OpLinearSVC.this.type

    Permalink

    Whether to fit an intercept term.

    Whether to fit an intercept term. Default is true.

  107. final def setInput(features: InputFeatures): OpLinearSVC.this.type

    Permalink

    Input features that will be used by the stage

    Input features that will be used by the stage

    returns

    feature of type InputFeatures

    Definition Classes
    OpPipelineStageBase
  108. final def setInputFeatures[S <: OPFeature](features: Array[S]): OpLinearSVC.this.type

    Permalink

    Sets input features

    Sets input features

    S

    feature like type

    features

    array of input features

    returns

    this stage

    Attributes
    protected
    Definition Classes
    InputParams
  109. def setMaxIter(value: Int): OpLinearSVC.this.type

    Permalink

    Set the maximum number of iterations.

    Set the maximum number of iterations. Default is 100.

  110. final def setMetadata(m: Metadata): OpLinearSVC.this.type

    Permalink
    Definition Classes
    OpPipelineStageParams
  111. def setOutputFeatureName(name: String): OpLinearSVC.this.type

    Permalink
    Definition Classes
    OpPipelineStage
  112. def setRegParam(value: Double): OpLinearSVC.this.type

    Permalink

    Set the regularization parameter.

    Set the regularization parameter. Default is 0.0.

  113. def setSparkMlStage(stage: Option[LinearSVC]): OpLinearSVC.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    SparkWrapperParams
  114. def setStageSavePath(path: String): OpLinearSVC.this.type

    Permalink

    Sets a save path for wrapped spark stage

    Sets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  115. def setStandardization(value: Boolean): OpLinearSVC.this.type

    Permalink

    Whether to standardize the training features before fitting the model.

    Whether to standardize the training features before fitting the model. Default is true.

  116. def setThreshold(value: Double): OpLinearSVC.this.type

    Permalink

    Set threshold in binary classification.

  117. def setTol(value: Double): OpLinearSVC.this.type

    Permalink

    Set the convergence tolerance of iterations.

    Set the convergence tolerance of iterations. Smaller values will lead to higher accuracy at the cost of more iterations. Default is 1E-6.

  118. def setWeightCol(value: String): OpLinearSVC.this.type

    Permalink

    Set the value of param weightCol.

    Set the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.

  119. final val sparkInputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  120. final val sparkMlStage: SparkStageParam[LinearSVC]

    Permalink
    Definition Classes
    SparkWrapperParams
  121. final val sparkOutputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  122. final def stageName: String

    Permalink

    Stage unique name consisting of the stage operation name and uid

    Stage unique name consisting of the stage operation name and uid

    returns

    stage name

    Definition Classes
    OpPipelineStageBase
  123. final val standardization: BooleanParam

    Permalink
    Definition Classes
    HasStandardization
  124. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  125. final val threshold: DoubleParam

    Permalink
    Definition Classes
    LinearSVCParams → HasThreshold
  126. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  127. final val tol: DoubleParam

    Permalink
    Definition Classes
    HasTol
  128. final def transformSchema(schema: StructType): StructType

    Permalink

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    schema

    schema of the input data frame

    returns

    a new schema with the output features added

    Definition Classes
    OpPipelineStageBase
  129. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  130. implicit val tti1: scala.reflect.api.JavaUniverse.TypeTag[RealNN]

    Permalink
    Definition Classes
    OpPredictorWrapper
  131. implicit val tti2: scala.reflect.api.JavaUniverse.TypeTag[OPVector]

    Permalink
    Definition Classes
    OpPredictorWrapper
  132. implicit val tto: scala.reflect.api.JavaUniverse.TypeTag[Prediction]

    Permalink

    Type tag of the output

    Type tag of the output

    Definition Classes
    OpPredictorWrapper → HasOut
  133. implicit val ttov: scala.reflect.api.JavaUniverse.TypeTag[Map[String, Double]]

    Permalink

    Type tag of the output value

    Type tag of the output value

    Definition Classes
    OpPredictorWrapper → HasOut
  134. val uid: String

    Permalink

    stage uid

    stage uid

    Definition Classes
    OpPredictorWrapper → Identifiable
  135. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    ClassifierParams → PredictorParams
  136. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  137. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  138. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  139. final val weightCol: Param[String]

    Permalink
    Definition Classes
    HasWeightCol
  140. final def write: MLWriter

    Permalink
    Definition Classes
    OpPipelineStageBase → MLWritable

Inherited from OpLinearSVCParams

Inherited from LinearSVCParams

Inherited from HasThreshold

Inherited from HasAggregationDepth

Inherited from HasWeightCol

Inherited from HasStandardization

Inherited from HasTol

Inherited from HasFitIntercept

Inherited from HasMaxIter

Inherited from HasRegParam

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from OpPredictorWrapper[LinearSVC, LinearSVCModel]

Inherited from SparkWrapperParams[LinearSVC]

Inherited from HasOut[Prediction]

Inherited from HasIn2

Inherited from HasIn1

Inherited from OpPipelineStage[Prediction]

Inherited from OpPipelineStageBase

Inherited from MLWritable

Inherited from OpPipelineStageParams

Inherited from InputParams

Inherited from Estimator[OpPredictorWrapperModel[LinearSVCModel]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

expertSetParam

setParam

Ungrouped