Class

com.salesforce.op.stages.impl.classification

OpLogisticRegression

Related Doc: package classification

Permalink

class OpLogisticRegression extends OpPredictorWrapper[LogisticRegression, LogisticRegressionModel] with OpLogisticRegressionParams

Wrapper around spark ml logistic regression org.apache.spark.ml.classification.LogisticRegression

Linear Supertypes
OpLogisticRegressionParams, LogisticRegressionParams, HasAggregationDepth, HasThreshold, HasWeightCol, HasStandardization, HasTol, HasFitIntercept, HasMaxIter, HasElasticNetParam, HasRegParam, ProbabilisticClassifierParams, HasThresholds, HasProbabilityCol, ClassifierParams, HasRawPredictionCol, PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, OpPredictorWrapper[LogisticRegression, LogisticRegressionModel], SparkWrapperParams[LogisticRegression], OpPipelineStage2[RealNN, OPVector, Prediction], HasOut[Prediction], HasIn2, HasIn1, OpPipelineStage[Prediction], OpPipelineStageBase, MLWritable, OpPipelineStageParams, InputParams, Estimator[OpPredictorWrapperModel[LogisticRegressionModel]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OpLogisticRegression
  2. OpLogisticRegressionParams
  3. LogisticRegressionParams
  4. HasAggregationDepth
  5. HasThreshold
  6. HasWeightCol
  7. HasStandardization
  8. HasTol
  9. HasFitIntercept
  10. HasMaxIter
  11. HasElasticNetParam
  12. HasRegParam
  13. ProbabilisticClassifierParams
  14. HasThresholds
  15. HasProbabilityCol
  16. ClassifierParams
  17. HasRawPredictionCol
  18. PredictorParams
  19. HasPredictionCol
  20. HasFeaturesCol
  21. HasLabelCol
  22. OpPredictorWrapper
  23. SparkWrapperParams
  24. OpPipelineStage2
  25. HasOut
  26. HasIn2
  27. HasIn1
  28. OpPipelineStage
  29. OpPipelineStageBase
  30. MLWritable
  31. OpPipelineStageParams
  32. InputParams
  33. Estimator
  34. PipelineStage
  35. Logging
  36. Params
  37. Serializable
  38. Serializable
  39. Identifiable
  40. AnyRef
  41. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OpLogisticRegression(uid: String = UID[OpLogisticRegression])

    Permalink

Type Members

  1. final type InputFeatures = (FeatureLike[RealNN], FeatureLike[OPVector])

    Permalink

    Input Features type

    Input Features type

    Definition Classes
    OpPipelineStage2OpPipelineStageInputParams
  2. final type OutputFeatures = FeatureLike[Prediction]

    Permalink
    Definition Classes
    OpPipelineStageOpPipelineStageBase

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final val aggregationDepth: IntParam

    Permalink
    Definition Classes
    HasAggregationDepth
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. final def checkInputLength(features: Array[_]): Boolean

    Permalink

    Checks the input length

    Checks the input length

    features

    input features

    returns

    true is input size as expected, false otherwise

    Definition Classes
    OpPipelineStage2InputParams
  8. def checkSerializable: Try[Unit]

    Permalink

    Check if the stage is serializable

    Check if the stage is serializable

    returns

    Failure if not serializable

    Definition Classes
    OpPipelineStageBase
  9. def checkThresholdConsistency(): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    LogisticRegressionParams
  10. final def clear(param: Param[_]): OpLogisticRegression.this.type

    Permalink
    Definition Classes
    Params
  11. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. final def copy(extra: ParamMap): OpLogisticRegression.this.type

    Permalink

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    Note: that the convention in spark is to have the uid be a constructor argument, so that copies will share a uid with the original (developers should follow this convention).

    extra

    new parameters want to add to instance

    returns

    a new instance with the same uid

    Definition Classes
    OpPipelineStageBase → Params
  13. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  14. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  15. final val elasticNetParam: DoubleParam

    Permalink
    Definition Classes
    HasElasticNetParam
  16. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  18. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  19. def explainParams(): String

    Permalink
    Definition Classes
    Params
  20. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  21. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  22. final val family: Param[String]

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.1.0" )
  23. final val featuresCol: Param[String]

    Permalink
    Definition Classes
    HasFeaturesCol
  24. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  25. def fit(dataset: Dataset[_]): OpPredictorWrapperModel[LogisticRegressionModel]

    Permalink

    Function that fits the binary model

    Function that fits the binary model

    Definition Classes
    OpPredictorWrapper → Estimator
  26. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[OpPredictorWrapperModel[LogisticRegressionModel]]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  27. def fit(dataset: Dataset[_], paramMap: ParamMap): OpPredictorWrapperModel[LogisticRegressionModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  28. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OpPredictorWrapperModel[LogisticRegressionModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  29. final val fitIntercept: BooleanParam

    Permalink
    Definition Classes
    HasFitIntercept
  30. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  31. final def getAggregationDepth: Int

    Permalink
    Definition Classes
    HasAggregationDepth
  32. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  33. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  34. final def getElasticNetParam: Double

    Permalink
    Definition Classes
    HasElasticNetParam
  35. def getFamily: String

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.1.0" )
  36. final def getFeaturesCol: String

    Permalink
    Definition Classes
    HasFeaturesCol
  37. final def getFitIntercept: Boolean

    Permalink
    Definition Classes
    HasFitIntercept
  38. def getInputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control input columns for Spark stage

    Gets names of parameters that control input columns for Spark stage

    Definition Classes
    SparkWrapperParams
  39. final def getInputFeature[T <: FeatureType](i: Int): Option[FeatureLike[T]]

    Permalink

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  40. final def getInputFeatures(): Array[OPFeature]

    Permalink

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  41. final def getInputSchema(): StructType

    Permalink
    Definition Classes
    OpPipelineStageParams
  42. final def getLabelCol: String

    Permalink
    Definition Classes
    HasLabelCol
  43. def getLowerBoundsOnCoefficients: Matrix

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.2.0" )
  44. def getLowerBoundsOnIntercepts: Vector

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.2.0" )
  45. final def getMaxIter: Int

    Permalink
    Definition Classes
    HasMaxIter
  46. final def getMetadata(): Metadata

    Permalink
    Definition Classes
    OpPipelineStageParams
  47. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  48. def getOutput(): FeatureLike[Prediction]

    Permalink

    Output features that will be created by this stage

    Output features that will be created by this stage

    returns

    feature of type OutputFeatures

    Definition Classes
    HasOut → OpPipelineStageBase
  49. def getOutputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control output columns for Spark stage

    Gets names of parameters that control output columns for Spark stage

    Definition Classes
    SparkWrapperParams
  50. final def getOutputFeatureName: String

    Permalink

    Name of output feature (i.e.

    Name of output feature (i.e. column created by this stage)

    Definition Classes
    OpPipelineStage
  51. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  52. final def getPredictionCol: String

    Permalink
    Definition Classes
    HasPredictionCol
  53. final def getProbabilityCol: String

    Permalink
    Definition Classes
    HasProbabilityCol
  54. final def getRawPredictionCol: String

    Permalink
    Definition Classes
    HasRawPredictionCol
  55. final def getRegParam: Double

    Permalink
    Definition Classes
    HasRegParam
  56. def getSparkMlStage(): Option[LogisticRegression]

    Permalink

    Method to access the spark stage being wrapped

    Method to access the spark stage being wrapped

    returns

    Option of spark ml stage

    Definition Classes
    SparkWrapperParams
  57. def getStageSavePath(): Option[String]

    Permalink

    Gets a save path for wrapped spark stage

    Gets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  58. final def getStandardization: Boolean

    Permalink
    Definition Classes
    HasStandardization
  59. def getThreshold: Double

    Permalink
    Definition Classes
    LogisticRegressionParams → HasThreshold
  60. def getThresholds: Array[Double]

    Permalink
    Definition Classes
    LogisticRegressionParams → HasThresholds
  61. final def getTol: Double

    Permalink
    Definition Classes
    HasTol
  62. final def getTransientFeature(i: Int): Option[TransientFeature]

    Permalink

    Gets an input feature at index i

    Gets an input feature at index i

    i

    input index

    returns

    maybe an input feature

    Definition Classes
    InputParams
  63. final def getTransientFeatures(): Array[TransientFeature]

    Permalink

    Gets the input Features

    Gets the input Features

    returns

    input features

    Definition Classes
    InputParams
  64. def getUpperBoundsOnCoefficients: Matrix

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.2.0" )
  65. def getUpperBoundsOnIntercepts: Vector

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.2.0" )
  66. final def getWeightCol: String

    Permalink
    Definition Classes
    HasWeightCol
  67. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  68. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  69. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  70. final def in1: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn1
  71. final def in2: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn2
  72. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. final def inputAsArray(in: InputFeatures): Array[OPFeature]

    Permalink

    Function to convert InputFeatures to an Array of FeatureLike

    Function to convert InputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStage2InputParams
  75. val inputParam1Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  76. val inputParam2Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  77. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  78. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  79. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  80. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. final val labelCol: Param[String]

    Permalink
    Definition Classes
    HasLabelCol
  82. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  83. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  84. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  85. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  86. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  87. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  88. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  89. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  90. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  91. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  92. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  93. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  94. val lowerBoundsOnCoefficients: Param[Matrix]

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.2.0" )
  95. val lowerBoundsOnIntercepts: Param[Vector]

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.2.0" )
  96. final val maxIter: IntParam

    Permalink
    Definition Classes
    HasMaxIter
  97. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  98. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  99. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  100. def onGetMetadata(): Unit

    Permalink

    Function to be called on getMetadata

    Function to be called on getMetadata

    Attributes
    protected
    Definition Classes
    OpPipelineStageParams
  101. def onSetInput(): Unit

    Permalink

    Function to be called on setInput

    Function to be called on setInput

    Attributes
    protected
    Definition Classes
    OpLogisticRegressionInputParams
  102. val operationName: String

    Permalink

    Short unique name of the operation this stage performs

    Short unique name of the operation this stage performs

    returns

    operation name

    Definition Classes
    OpPredictorWrapperOpPipelineStageBase
  103. final def outputAsArray(out: OutputFeatures): Array[OPFeature]

    Permalink

    Function to convert OutputFeatures to an Array of FeatureLike

    Function to convert OutputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStageOpPipelineStageBase
  104. def outputFeatureUid: String

    Permalink
    Attributes
    protected[com.salesforce.op]
    Definition Classes
    OpPipelineStage2OpPipelineStage
  105. def outputIsResponse: Boolean

    Permalink

    Should output feature be a response? Yes, if any of the input features are.

    Should output feature be a response? Yes, if any of the input features are.

    returns

    true if the the output feature should be a response

    Definition Classes
    OpPipelineStage
  106. val outputParamName: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  107. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  108. final val predictionCol: Param[String]

    Permalink
    Definition Classes
    HasPredictionCol
  109. val predictor: LogisticRegression

    Permalink

    the predictor to wrap

    the predictor to wrap

    Definition Classes
    OpPredictorWrapper
  110. final val probabilityCol: Param[String]

    Permalink
    Definition Classes
    HasProbabilityCol
  111. final val rawPredictionCol: Param[String]

    Permalink
    Definition Classes
    HasRawPredictionCol
  112. final val regParam: DoubleParam

    Permalink
    Definition Classes
    HasRegParam
  113. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  114. final def set(paramPair: ParamPair[_]): OpLogisticRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  115. final def set(param: String, value: Any): OpLogisticRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  116. final def set[T](param: Param[T], value: T): OpLogisticRegression.this.type

    Permalink
    Definition Classes
    Params
  117. def setAggregationDepth(value: Int): OpLogisticRegression.this.type

    Permalink

    Suggested depth for treeAggregate (greater than or equal to 2).

    Suggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2.

  118. final def setDefault(paramPairs: ParamPair[_]*): OpLogisticRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  119. final def setDefault[T](param: Param[T], value: T): OpLogisticRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  120. def setElasticNetParam(value: Double): OpLogisticRegression.this.type

    Permalink

    Set the ElasticNet mixing parameter.

    Set the ElasticNet mixing parameter. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty. For alpha in (0,1), the penalty is a combination of L1 and L2. Default is 0.0 which is an L2 penalty.

    Note: Fitting under bound constrained optimization only supports L2 regularization, so throws exception if this param is non-zero value.

  121. def setFamily(value: String): OpLogisticRegression.this.type

    Permalink

    Sets the value of param family.

    Sets the value of param family. Default is "auto".

  122. def setFitIntercept(value: Boolean): OpLogisticRegression.this.type

    Permalink

    Whether to fit an intercept term.

    Whether to fit an intercept term. Default is true.

  123. final def setInput(features: InputFeatures): OpLogisticRegression.this.type

    Permalink

    Input features that will be used by the stage

    Input features that will be used by the stage

    returns

    feature of type InputFeatures

    Definition Classes
    OpPipelineStageBase
  124. final def setInputFeatures[S <: OPFeature](features: Array[S]): OpLogisticRegression.this.type

    Permalink

    Sets input features

    Sets input features

    S

    feature like type

    features

    array of input features

    returns

    this stage

    Attributes
    protected
    Definition Classes
    InputParams
  125. def setLowerBoundsOnCoefficients(value: Matrix): OpLogisticRegression.this.type

    Permalink

    Set the lower bounds on coefficients if fitting under bound constrained optimization.

  126. def setLowerBoundsOnIntercepts(value: Vector): OpLogisticRegression.this.type

    Permalink

    Set the lower bounds on intercepts if fitting under bound constrained optimization.

  127. def setMaxIter(value: Int): OpLogisticRegression.this.type

    Permalink

    Set the maximum number of iterations.

    Set the maximum number of iterations. Default is 100.

  128. final def setMetadata(m: Metadata): OpLogisticRegression.this.type

    Permalink
    Definition Classes
    OpPipelineStageParams
  129. def setOutputFeatureName(name: String): OpLogisticRegression.this.type

    Permalink
    Definition Classes
    OpPipelineStage
  130. def setRegParam(value: Double): OpLogisticRegression.this.type

    Permalink

    Set the regularization parameter.

    Set the regularization parameter. Default is 0.0.

  131. def setSparkMlStage(stage: Option[LogisticRegression]): OpLogisticRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    SparkWrapperParams
  132. def setStageSavePath(path: String): OpLogisticRegression.this.type

    Permalink

    Sets a save path for wrapped spark stage

    Sets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  133. def setStandardization(value: Boolean): OpLogisticRegression.this.type

    Permalink

    Whether to standardize the training features before fitting the model.

    Whether to standardize the training features before fitting the model. The coefficients of models will be always returned on the original scale, so it will be transparent for users. Note that with/without standardization, the models should be always converged to the same solution when no regularization is applied. In R's GLMNET package, the default behavior is true as well. Default is true.

  134. def setThreshold(value: Double): OpLogisticRegression.this.type

    Permalink
    Definition Classes
    OpLogisticRegression → LogisticRegressionParams
  135. def setThresholds(value: Array[Double]): OpLogisticRegression.this.type

    Permalink
    Definition Classes
    OpLogisticRegression → LogisticRegressionParams
  136. def setTol(value: Double): OpLogisticRegression.this.type

    Permalink

    Set the convergence tolerance of iterations.

    Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy at the cost of more iterations. Default is 1E-6.

  137. def setUpperBoundsOnCoefficients(value: Matrix): OpLogisticRegression.this.type

    Permalink

    Set the upper bounds on coefficients if fitting under bound constrained optimization.

  138. def setUpperBoundsOnIntercepts(value: Vector): OpLogisticRegression.this.type

    Permalink

    Set the upper bounds on intercepts if fitting under bound constrained optimization.

  139. def setWeightCol(value: String): OpLogisticRegression.this.type

    Permalink

    Sets the value of param weightCol.

    Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.

  140. final val sparkInputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  141. final val sparkMlStage: SparkStageParam[LogisticRegression]

    Permalink
    Definition Classes
    SparkWrapperParams
  142. final val sparkOutputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  143. final def stageName: String

    Permalink

    Stage unique name consisting of the stage operation name and uid

    Stage unique name consisting of the stage operation name and uid

    returns

    stage name

    Definition Classes
    OpPipelineStageBase
  144. final val standardization: BooleanParam

    Permalink
    Definition Classes
    HasStandardization
  145. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  146. val threshold: DoubleParam

    Permalink
    Definition Classes
    HasThreshold
  147. final val thresholds: DoubleArrayParam

    Permalink
    Definition Classes
    HasThresholds
  148. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  149. final val tol: DoubleParam

    Permalink
    Definition Classes
    HasTol
  150. final def transformSchema(schema: StructType): StructType

    Permalink

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    schema

    schema of the input data frame

    returns

    a new schema with the output features added

    Definition Classes
    OpPipelineStageBase
  151. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  152. implicit val tti1: scala.reflect.api.JavaUniverse.TypeTag[RealNN]

    Permalink
    Definition Classes
    OpPredictorWrapper
  153. implicit val tti2: scala.reflect.api.JavaUniverse.TypeTag[OPVector]

    Permalink
    Definition Classes
    OpPredictorWrapper
  154. implicit val tto: scala.reflect.api.JavaUniverse.TypeTag[Prediction]

    Permalink

    Type tag of the output

    Type tag of the output

    Definition Classes
    OpPredictorWrapper → HasOut
  155. implicit val ttov: scala.reflect.api.JavaUniverse.TypeTag[Map[String, Double]]

    Permalink

    Type tag of the output value

    Type tag of the output value

    Definition Classes
    OpPredictorWrapper → HasOut
  156. val uid: String

    Permalink

    stage uid

    stage uid

    Definition Classes
    OpPredictorWrapper → Identifiable
  157. val upperBoundsOnCoefficients: Param[Matrix]

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.2.0" )
  158. val upperBoundsOnIntercepts: Param[Vector]

    Permalink
    Definition Classes
    LogisticRegressionParams
    Annotations
    @Since( "2.2.0" )
  159. def usingBoundConstrainedOptimization: Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    LogisticRegressionParams
  160. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    LogisticRegressionParams → ProbabilisticClassifierParams → ClassifierParams → PredictorParams
  161. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  162. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  163. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  164. final val weightCol: Param[String]

    Permalink
    Definition Classes
    HasWeightCol
  165. final def write: MLWriter

    Permalink
    Definition Classes
    OpPipelineStageBase → MLWritable

Inherited from LogisticRegressionParams

Inherited from HasAggregationDepth

Inherited from HasThreshold

Inherited from HasWeightCol

Inherited from HasStandardization

Inherited from HasTol

Inherited from HasFitIntercept

Inherited from HasMaxIter

Inherited from HasElasticNetParam

Inherited from HasRegParam

Inherited from ProbabilisticClassifierParams

Inherited from HasThresholds

Inherited from HasProbabilityCol

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from OpPredictorWrapper[LogisticRegression, LogisticRegressionModel]

Inherited from SparkWrapperParams[LogisticRegression]

Inherited from HasOut[Prediction]

Inherited from HasIn2

Inherited from HasIn1

Inherited from OpPipelineStage[Prediction]

Inherited from OpPipelineStageBase

Inherited from MLWritable

Inherited from OpPipelineStageParams

Inherited from InputParams

Inherited from Estimator[OpPredictorWrapperModel[LogisticRegressionModel]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

expertSetParam

setParam

Ungrouped