Class

com.salesforce.op.stages.impl.classification

OpMultilayerPerceptronClassifier

Related Doc: package classification

Permalink

class OpMultilayerPerceptronClassifier extends OpPredictorWrapper[MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel] with OpMultilayerPerceptronClassifierParams

Wrapper for spark MultiLayerPerceptronClassifier org.apache.spark.ml.classification.MultilayerPerceptronClassifier

Linear Supertypes
OpMultilayerPerceptronClassifierParams, MultilayerPerceptronParams, HasSolver, HasStepSize, HasTol, HasMaxIter, HasSeed, ProbabilisticClassifierParams, HasThresholds, HasProbabilityCol, ClassifierParams, HasRawPredictionCol, PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, OpPredictorWrapper[MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel], SparkWrapperParams[MultilayerPerceptronClassifier], OpPipelineStage2[RealNN, OPVector, Prediction], HasOut[Prediction], HasIn2, HasIn1, OpPipelineStage[Prediction], OpPipelineStageBase, MLWritable, OpPipelineStageParams, InputParams, Estimator[OpPredictorWrapperModel[MultilayerPerceptronClassificationModel]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OpMultilayerPerceptronClassifier
  2. OpMultilayerPerceptronClassifierParams
  3. MultilayerPerceptronParams
  4. HasSolver
  5. HasStepSize
  6. HasTol
  7. HasMaxIter
  8. HasSeed
  9. ProbabilisticClassifierParams
  10. HasThresholds
  11. HasProbabilityCol
  12. ClassifierParams
  13. HasRawPredictionCol
  14. PredictorParams
  15. HasPredictionCol
  16. HasFeaturesCol
  17. HasLabelCol
  18. OpPredictorWrapper
  19. SparkWrapperParams
  20. OpPipelineStage2
  21. HasOut
  22. HasIn2
  23. HasIn1
  24. OpPipelineStage
  25. OpPipelineStageBase
  26. MLWritable
  27. OpPipelineStageParams
  28. InputParams
  29. Estimator
  30. PipelineStage
  31. Logging
  32. Params
  33. Serializable
  34. Serializable
  35. Identifiable
  36. AnyRef
  37. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OpMultilayerPerceptronClassifier(uid: String = ...)

    Permalink

    uid

    stage uid

Type Members

  1. final type InputFeatures = (FeatureLike[RealNN], FeatureLike[OPVector])

    Permalink

    Input Features type

    Input Features type

    Definition Classes
    OpPipelineStage2OpPipelineStageInputParams
  2. final type OutputFeatures = FeatureLike[Prediction]

    Permalink
    Definition Classes
    OpPipelineStageOpPipelineStageBase

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final val blockSize: IntParam

    Permalink
    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  7. final def checkInputLength(features: Array[_]): Boolean

    Permalink

    Checks the input length

    Checks the input length

    features

    input features

    returns

    true is input size as expected, false otherwise

    Definition Classes
    OpPipelineStage2InputParams
  8. def checkSerializable: Try[Unit]

    Permalink

    Check if the stage is serializable

    Check if the stage is serializable

    returns

    Failure if not serializable

    Definition Classes
    OpPipelineStageBase
  9. final def clear(param: Param[_]): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Definition Classes
    Params
  10. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. final def copy(extra: ParamMap): OpMultilayerPerceptronClassifier.this.type

    Permalink

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    Note: that the convention in spark is to have the uid be a constructor argument, so that copies will share a uid with the original (developers should follow this convention).

    extra

    new parameters want to add to instance

    returns

    a new instance with the same uid

    Definition Classes
    OpPipelineStageBase → Params
  12. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  13. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  14. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  16. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  17. def explainParams(): String

    Permalink
    Definition Classes
    Params
  18. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  19. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  20. final val featuresCol: Param[String]

    Permalink
    Definition Classes
    HasFeaturesCol
  21. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. def fit(dataset: Dataset[_]): OpPredictorWrapperModel[MultilayerPerceptronClassificationModel]

    Permalink

    Function that fits the binary model

    Function that fits the binary model

    Definition Classes
    OpPredictorWrapper → Estimator
  23. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[OpPredictorWrapperModel[MultilayerPerceptronClassificationModel]]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  24. def fit(dataset: Dataset[_], paramMap: ParamMap): OpPredictorWrapperModel[MultilayerPerceptronClassificationModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  25. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OpPredictorWrapperModel[MultilayerPerceptronClassificationModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  26. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  27. final def getBlockSize: Int

    Permalink
    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  28. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  29. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  30. final def getFeaturesCol: String

    Permalink
    Definition Classes
    HasFeaturesCol
  31. final def getInitialWeights: Vector

    Permalink
    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "2.0.0" )
  32. def getInputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control input columns for Spark stage

    Gets names of parameters that control input columns for Spark stage

    Definition Classes
    SparkWrapperParams
  33. final def getInputFeature[T <: FeatureType](i: Int): Option[FeatureLike[T]]

    Permalink

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  34. final def getInputFeatures(): Array[OPFeature]

    Permalink

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  35. final def getInputSchema(): StructType

    Permalink
    Definition Classes
    OpPipelineStageParams
  36. final def getLabelCol: String

    Permalink
    Definition Classes
    HasLabelCol
  37. final def getLayers: Array[Int]

    Permalink
    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  38. def getLocalMlStage(): Option[Transformer]

    Permalink

    Method to access the local version of stage being wrapped

    Method to access the local version of stage being wrapped

    returns

    Option of ml leap runtime version of the spark stage after reloading as local

    Definition Classes
    SparkWrapperParams
  39. final def getMaxIter: Int

    Permalink
    Definition Classes
    HasMaxIter
  40. final def getMetadata(): Metadata

    Permalink
    Definition Classes
    OpPipelineStageParams
  41. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  42. def getOutput(): FeatureLike[Prediction]

    Permalink

    Output features that will be created by this stage

    Output features that will be created by this stage

    returns

    feature of type OutputFeatures

    Definition Classes
    HasOut → OpPipelineStageBase
  43. def getOutputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control output columns for Spark stage

    Gets names of parameters that control output columns for Spark stage

    Definition Classes
    SparkWrapperParams
  44. final def getOutputFeatureName: String

    Permalink

    Name of output feature (i.e.

    Name of output feature (i.e. column created by this stage)

    Definition Classes
    OpPipelineStage
  45. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  46. final def getPredictionCol: String

    Permalink
    Definition Classes
    HasPredictionCol
  47. final def getProbabilityCol: String

    Permalink
    Definition Classes
    HasProbabilityCol
  48. final def getRawPredictionCol: String

    Permalink
    Definition Classes
    HasRawPredictionCol
  49. final def getSeed: Long

    Permalink
    Definition Classes
    HasSeed
  50. final def getSolver: String

    Permalink
    Definition Classes
    HasSolver
  51. def getSparkMlStage(): Option[MultilayerPerceptronClassifier]

    Permalink

    Method to access the spark stage being wrapped

    Method to access the spark stage being wrapped

    returns

    Option of spark ml stage

    Definition Classes
    SparkWrapperParams
  52. def getStageSavePath(): Option[String]

    Permalink

    Gets a save path for wrapped spark stage

    Gets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  53. final def getStepSize: Double

    Permalink
    Definition Classes
    HasStepSize
  54. def getThresholds: Array[Double]

    Permalink
    Definition Classes
    HasThresholds
  55. final def getTol: Double

    Permalink
    Definition Classes
    HasTol
  56. final def getTransientFeature(i: Int): Option[TransientFeature]

    Permalink

    Gets an input feature at index i

    Gets an input feature at index i

    i

    input index

    returns

    maybe an input feature

    Definition Classes
    InputParams
  57. final def getTransientFeatures(): Array[TransientFeature]

    Permalink

    Gets the input Features

    Gets the input Features

    returns

    input features

    Definition Classes
    InputParams
  58. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  59. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  60. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  61. final def in1: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn1
  62. final def in2: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn2
  63. final val initialWeights: Param[Vector]

    Permalink
    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "2.0.0" )
  64. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  65. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  66. final def inputAsArray(in: InputFeatures): Array[OPFeature]

    Permalink

    Function to convert InputFeatures to an Array of FeatureLike

    Function to convert InputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStage2InputParams
  67. val inputParam1Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  68. val inputParam2Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  69. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  70. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  71. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  72. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. final val labelCol: Param[String]

    Permalink
    Definition Classes
    HasLabelCol
  74. final val layers: IntArrayParam

    Permalink
    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  75. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  77. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  78. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  82. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  83. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  84. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  85. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  86. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  87. final val maxIter: IntParam

    Permalink
    Definition Classes
    HasMaxIter
  88. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  89. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  90. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  91. def onGetMetadata(): Unit

    Permalink

    Function to be called on getMetadata

    Function to be called on getMetadata

    Attributes
    protected
    Definition Classes
    OpPipelineStageParams
  92. def onSetInput(): Unit

    Permalink

    Function to be called on setInput

    Function to be called on setInput

    Attributes
    protected
    Definition Classes
    OpMultilayerPerceptronClassifierInputParams
  93. val operationName: String

    Permalink

    Short unique name of the operation this stage performs

    Short unique name of the operation this stage performs

    returns

    operation name

    Definition Classes
    OpPredictorWrapperOpPipelineStageBase
  94. final def outputAsArray(out: OutputFeatures): Array[OPFeature]

    Permalink

    Function to convert OutputFeatures to an Array of FeatureLike

    Function to convert OutputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStageOpPipelineStageBase
  95. def outputFeatureUid: String

    Permalink
    Attributes
    protected[com.salesforce.op]
    Definition Classes
    OpPipelineStage2OpPipelineStage
  96. def outputIsResponse: Boolean

    Permalink

    Should output feature be a response? Yes, if any of the input features are.

    Should output feature be a response? Yes, if any of the input features are.

    returns

    true if the the output feature should be a response

    Definition Classes
    OpPipelineStage
  97. val outputParamName: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  98. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  99. final val predictionCol: Param[String]

    Permalink
    Definition Classes
    HasPredictionCol
  100. val predictor: MultilayerPerceptronClassifier

    Permalink

    the predictor to wrap

    the predictor to wrap

    Definition Classes
    OpPredictorWrapper
  101. final val probabilityCol: Param[String]

    Permalink
    Definition Classes
    HasProbabilityCol
  102. final val rawPredictionCol: Param[String]

    Permalink
    Definition Classes
    HasRawPredictionCol
  103. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  104. final val seed: LongParam

    Permalink
    Definition Classes
    HasSeed
  105. final def set(paramPair: ParamPair[_]): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  106. final def set(param: String, value: Any): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  107. final def set[T](param: Param[T], value: T): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Definition Classes
    Params
  108. def setBlockSize(value: Int): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param blockSize.

    Sets the value of param blockSize. Default is 128.

  109. final def setDefault(paramPairs: ParamPair[_]*): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  110. final def setDefault[T](param: Param[T], value: T): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  111. def setInitialWeights(value: Vector): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param initialWeights.

  112. final def setInput(features: InputFeatures): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Input features that will be used by the stage

    Input features that will be used by the stage

    returns

    feature of type InputFeatures

    Definition Classes
    OpPipelineStageBase
  113. final def setInputFeatures[S <: OPFeature](features: Array[S]): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Sets input features

    Sets input features

    S

    feature like type

    features

    array of input features

    returns

    this stage

    Attributes
    protected
    Definition Classes
    InputParams
  114. def setLayers(value: Array[Int]): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param layers.

  115. def setMaxIter(value: Int): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Set the maximum number of iterations.

    Set the maximum number of iterations. Default is 100.

  116. final def setMetadata(m: Metadata): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Definition Classes
    OpPipelineStageParams
  117. def setOutputDF(df: DataFrame): Unit

    Permalink
    Definition Classes
    SparkWrapperParams
  118. def setOutputFeatureName(name: String): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Definition Classes
    OpPipelineStage
  119. def setSeed(value: Long): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Set the seed for weights initialization if weights are not set

  120. def setSolver(value: String): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param solver.

    Sets the value of param solver. Default is "l-bfgs".

  121. def setSparkMlStage(stage: Option[MultilayerPerceptronClassifier]): OpMultilayerPerceptronClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    SparkWrapperParams
  122. def setStageSavePath(path: String): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Sets a save path for wrapped spark stage

    Sets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  123. def setStepSize(value: Double): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param stepSize (applicable only for solver "gd").

    Sets the value of param stepSize (applicable only for solver "gd"). Default is 0.03.

  124. def setTol(value: Double): OpMultilayerPerceptronClassifier.this.type

    Permalink

    Set the convergence tolerance of iterations.

    Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6.

  125. final val solver: Param[String]

    Permalink
    Definition Classes
    MultilayerPerceptronParams → HasSolver
    Annotations
    @Since( "2.0.0" )
  126. final val sparkInputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  127. final val sparkMlStage: SparkStageParam[MultilayerPerceptronClassifier]

    Permalink
    Definition Classes
    SparkWrapperParams
  128. final val sparkOutputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  129. final def stageName: String

    Permalink

    Stage unique name consisting of the stage operation name and uid

    Stage unique name consisting of the stage operation name and uid

    returns

    stage name

    Definition Classes
    OpPipelineStageBase
  130. val stepSize: DoubleParam

    Permalink
    Definition Classes
    HasStepSize
  131. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  132. final val thresholds: DoubleArrayParam

    Permalink
    Definition Classes
    HasThresholds
  133. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  134. final val tol: DoubleParam

    Permalink
    Definition Classes
    HasTol
  135. final def transformSchema(schema: StructType): StructType

    Permalink

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    schema

    schema of the input data frame

    returns

    a new schema with the output features added

    Definition Classes
    OpPipelineStageBase
  136. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  137. implicit val tti1: scala.reflect.api.JavaUniverse.TypeTag[RealNN]

    Permalink
    Definition Classes
    OpPredictorWrapper
  138. implicit val tti2: scala.reflect.api.JavaUniverse.TypeTag[OPVector]

    Permalink
    Definition Classes
    OpPredictorWrapper
  139. implicit val tto: scala.reflect.api.JavaUniverse.TypeTag[Prediction]

    Permalink

    Type tag of the output

    Type tag of the output

    Definition Classes
    OpPredictorWrapper → HasOut
  140. implicit val ttov: scala.reflect.api.JavaUniverse.TypeTag[Map[String, Double]]

    Permalink

    Type tag of the output value

    Type tag of the output value

    Definition Classes
    OpPredictorWrapper → HasOut
  141. val uid: String

    Permalink

    stage uid

    stage uid

    Definition Classes
    OpPredictorWrapper → Identifiable
  142. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    ProbabilisticClassifierParams → ClassifierParams → PredictorParams
  143. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  144. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  145. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  146. final def write: MLWriter

    Permalink
    Definition Classes
    OpPipelineStageBase → MLWritable

Inherited from MultilayerPerceptronParams

Inherited from HasSolver

Inherited from HasStepSize

Inherited from HasTol

Inherited from HasMaxIter

Inherited from HasSeed

Inherited from ProbabilisticClassifierParams

Inherited from HasThresholds

Inherited from HasProbabilityCol

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from OpPredictorWrapper[MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel]

Inherited from SparkWrapperParams[MultilayerPerceptronClassifier]

Inherited from HasOut[Prediction]

Inherited from HasIn2

Inherited from HasIn1

Inherited from OpPipelineStage[Prediction]

Inherited from OpPipelineStageBase

Inherited from MLWritable

Inherited from OpPipelineStageParams

Inherited from InputParams

Inherited from Estimator[OpPredictorWrapperModel[MultilayerPerceptronClassificationModel]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

expertSetParam

setParam

Ungrouped