Class

com.salesforce.op.stages.impl.classification

OpNaiveBayes

Related Doc: package classification

Permalink

class OpNaiveBayes extends OpPredictorWrapper[NaiveBayes, NaiveBayesModel] with OpNaiveBayesParams

Wrapper for spark Naive Bayes org.apache.spark.ml.classification.NaiveBayesModel

Linear Supertypes
OpNaiveBayesParams, NaiveBayesParams, HasWeightCol, PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, OpPredictorWrapper[NaiveBayes, NaiveBayesModel], SparkWrapperParams[NaiveBayes], OpPipelineStage2[RealNN, OPVector, Prediction], HasOut[Prediction], HasIn2, HasIn1, OpPipelineStage[Prediction], OpPipelineStageBase, MLWritable, OpPipelineStageParams, InputParams, Estimator[OpPredictorWrapperModel[NaiveBayesModel]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OpNaiveBayes
  2. OpNaiveBayesParams
  3. NaiveBayesParams
  4. HasWeightCol
  5. PredictorParams
  6. HasPredictionCol
  7. HasFeaturesCol
  8. HasLabelCol
  9. OpPredictorWrapper
  10. SparkWrapperParams
  11. OpPipelineStage2
  12. HasOut
  13. HasIn2
  14. HasIn1
  15. OpPipelineStage
  16. OpPipelineStageBase
  17. MLWritable
  18. OpPipelineStageParams
  19. InputParams
  20. Estimator
  21. PipelineStage
  22. Logging
  23. Params
  24. Serializable
  25. Serializable
  26. Identifiable
  27. AnyRef
  28. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OpNaiveBayes(uid: String = UID[OpNaiveBayes])

    Permalink

    uid

    stage uid

Type Members

  1. final type InputFeatures = (FeatureLike[RealNN], FeatureLike[OPVector])

    Permalink

    Input Features type

    Input Features type

    Definition Classes
    OpPipelineStage2OpPipelineStageInputParams
  2. final type OutputFeatures = FeatureLike[Prediction]

    Permalink
    Definition Classes
    OpPipelineStageOpPipelineStageBase

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final def checkInputLength(features: Array[_]): Boolean

    Permalink

    Checks the input length

    Checks the input length

    features

    input features

    returns

    true is input size as expected, false otherwise

    Definition Classes
    OpPipelineStage2InputParams
  7. def checkSerializable: Try[Unit]

    Permalink

    Check if the stage is serializable

    Check if the stage is serializable

    returns

    Failure if not serializable

    Definition Classes
    OpPipelineStageBase
  8. final def clear(param: Param[_]): OpNaiveBayes.this.type

    Permalink
    Definition Classes
    Params
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. final def copy(extra: ParamMap): OpNaiveBayes.this.type

    Permalink

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    Note: that the convention in spark is to have the uid be a constructor argument, so that copies will share a uid with the original (developers should follow this convention).

    extra

    new parameters want to add to instance

    returns

    a new instance with the same uid

    Definition Classes
    OpPipelineStageBase → Params
  11. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  13. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  15. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  16. def explainParams(): String

    Permalink
    Definition Classes
    Params
  17. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  18. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  19. final val featuresCol: Param[String]

    Permalink
    Definition Classes
    HasFeaturesCol
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. def fit(dataset: Dataset[_]): OpPredictorWrapperModel[NaiveBayesModel]

    Permalink

    Function that fits the binary model

    Function that fits the binary model

    Definition Classes
    OpPredictorWrapper → Estimator
  22. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[OpPredictorWrapperModel[NaiveBayesModel]]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  23. def fit(dataset: Dataset[_], paramMap: ParamMap): OpPredictorWrapperModel[NaiveBayesModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  24. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OpPredictorWrapperModel[NaiveBayesModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  25. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  26. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  27. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  28. final def getFeaturesCol: String

    Permalink
    Definition Classes
    HasFeaturesCol
  29. def getInputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control input columns for Spark stage

    Gets names of parameters that control input columns for Spark stage

    Definition Classes
    SparkWrapperParams
  30. final def getInputFeature[T <: FeatureType](i: Int): Option[FeatureLike[T]]

    Permalink

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  31. final def getInputFeatures(): Array[OPFeature]

    Permalink

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  32. final def getInputSchema(): StructType

    Permalink
    Definition Classes
    OpPipelineStageParams
  33. final def getLabelCol: String

    Permalink
    Definition Classes
    HasLabelCol
  34. def getLocalMlStage(): Option[Transformer]

    Permalink

    Method to access the local version of stage being wrapped

    Method to access the local version of stage being wrapped

    returns

    Option of ml leap runtime version of the spark stage after reloading as local

    Definition Classes
    SparkWrapperParams
  35. final def getMetadata(): Metadata

    Permalink
    Definition Classes
    OpPipelineStageParams
  36. final def getModelType: String

    Permalink
    Definition Classes
    NaiveBayesParams
  37. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  38. def getOutput(): FeatureLike[Prediction]

    Permalink

    Output features that will be created by this stage

    Output features that will be created by this stage

    returns

    feature of type OutputFeatures

    Definition Classes
    HasOut → OpPipelineStageBase
  39. def getOutputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control output columns for Spark stage

    Gets names of parameters that control output columns for Spark stage

    Definition Classes
    SparkWrapperParams
  40. final def getOutputFeatureName: String

    Permalink

    Name of output feature (i.e.

    Name of output feature (i.e. column created by this stage)

    Definition Classes
    OpPipelineStage
  41. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  42. final def getPredictionCol: String

    Permalink
    Definition Classes
    HasPredictionCol
  43. final def getSmoothing: Double

    Permalink
    Definition Classes
    NaiveBayesParams
  44. def getSparkMlStage(): Option[NaiveBayes]

    Permalink

    Method to access the spark stage being wrapped

    Method to access the spark stage being wrapped

    returns

    Option of spark ml stage

    Definition Classes
    SparkWrapperParams
  45. def getStageSavePath(): Option[String]

    Permalink

    Gets a save path for wrapped spark stage

    Gets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  46. final def getTransientFeature(i: Int): Option[TransientFeature]

    Permalink

    Gets an input feature at index i

    Gets an input feature at index i

    i

    input index

    returns

    maybe an input feature

    Definition Classes
    InputParams
  47. final def getTransientFeatures(): Array[TransientFeature]

    Permalink

    Gets the input Features

    Gets the input Features

    returns

    input features

    Definition Classes
    InputParams
  48. final def getWeightCol: String

    Permalink
    Definition Classes
    HasWeightCol
  49. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  50. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  51. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  52. final def in1: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn1
  53. final def in2: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn2
  54. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  55. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  56. final def inputAsArray(in: InputFeatures): Array[OPFeature]

    Permalink

    Function to convert InputFeatures to an Array of FeatureLike

    Function to convert InputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStage2InputParams
  57. val inputParam1Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  58. val inputParam2Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  59. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  60. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  61. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  62. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  63. final val labelCol: Param[String]

    Permalink
    Definition Classes
    HasLabelCol
  64. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  65. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  66. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  67. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  68. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  69. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  70. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  71. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  72. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  75. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. final val modelType: Param[String]

    Permalink
    Definition Classes
    NaiveBayesParams
  77. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  78. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  79. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  80. def onGetMetadata(): Unit

    Permalink

    Function to be called on getMetadata

    Function to be called on getMetadata

    Attributes
    protected
    Definition Classes
    OpPipelineStageParams
  81. def onSetInput(): Unit

    Permalink

    Function to be called on setInput

    Function to be called on setInput

    Attributes
    protected
    Definition Classes
    OpNaiveBayesInputParams
  82. val operationName: String

    Permalink

    Short unique name of the operation this stage performs

    Short unique name of the operation this stage performs

    returns

    operation name

    Definition Classes
    OpPredictorWrapperOpPipelineStageBase
  83. final def outputAsArray(out: OutputFeatures): Array[OPFeature]

    Permalink

    Function to convert OutputFeatures to an Array of FeatureLike

    Function to convert OutputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStageOpPipelineStageBase
  84. def outputFeatureUid: String

    Permalink
    Attributes
    protected[com.salesforce.op]
    Definition Classes
    OpPipelineStage2OpPipelineStage
  85. def outputIsResponse: Boolean

    Permalink

    Should output feature be a response? Yes, if any of the input features are.

    Should output feature be a response? Yes, if any of the input features are.

    returns

    true if the the output feature should be a response

    Definition Classes
    OpPipelineStage
  86. val outputParamName: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  87. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  88. final val predictionCol: Param[String]

    Permalink
    Definition Classes
    HasPredictionCol
  89. val predictor: NaiveBayes

    Permalink

    the predictor to wrap

    the predictor to wrap

    Definition Classes
    OpPredictorWrapper
  90. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  91. final def set(paramPair: ParamPair[_]): OpNaiveBayes.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  92. final def set(param: String, value: Any): OpNaiveBayes.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  93. final def set[T](param: Param[T], value: T): OpNaiveBayes.this.type

    Permalink
    Definition Classes
    Params
  94. final def setDefault(paramPairs: ParamPair[_]*): OpNaiveBayes.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  95. final def setDefault[T](param: Param[T], value: T): OpNaiveBayes.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  96. final def setInput(features: InputFeatures): OpNaiveBayes.this.type

    Permalink

    Input features that will be used by the stage

    Input features that will be used by the stage

    returns

    feature of type InputFeatures

    Definition Classes
    OpPipelineStageBase
  97. final def setInputFeatures[S <: OPFeature](features: Array[S]): OpNaiveBayes.this.type

    Permalink

    Sets input features

    Sets input features

    S

    feature like type

    features

    array of input features

    returns

    this stage

    Attributes
    protected
    Definition Classes
    InputParams
  98. final def setMetadata(m: Metadata): OpNaiveBayes.this.type

    Permalink
    Definition Classes
    OpPipelineStageParams
  99. def setModelType(value: String): OpNaiveBayes.this.type

    Permalink

    Set the model type using a string (case-sensitive).

    Set the model type using a string (case-sensitive). Supported options: "multinomial" and "bernoulli". Default is "multinomial"

  100. def setOutputDF(df: DataFrame): Unit

    Permalink
    Definition Classes
    SparkWrapperParams
  101. def setOutputFeatureName(name: String): OpNaiveBayes.this.type

    Permalink
    Definition Classes
    OpPipelineStage
  102. def setSmoothing(value: Double): OpNaiveBayes.this.type

    Permalink

    Set the smoothing parameter.

    Set the smoothing parameter. Default is 1.0.

  103. def setSparkMlStage(stage: Option[NaiveBayes]): OpNaiveBayes.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    SparkWrapperParams
  104. def setStageSavePath(path: String): OpNaiveBayes.this.type

    Permalink

    Sets a save path for wrapped spark stage

    Sets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  105. def setWeightCol(value: String): OpNaiveBayes.this.type

    Permalink

    Sets the value of param weightCol.

    Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.

  106. final val smoothing: DoubleParam

    Permalink
    Definition Classes
    NaiveBayesParams
  107. final val sparkInputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  108. final val sparkMlStage: SparkStageParam[NaiveBayes]

    Permalink
    Definition Classes
    SparkWrapperParams
  109. final val sparkOutputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  110. final def stageName: String

    Permalink

    Stage unique name consisting of the stage operation name and uid

    Stage unique name consisting of the stage operation name and uid

    returns

    stage name

    Definition Classes
    OpPipelineStageBase
  111. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  112. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  113. final def transformSchema(schema: StructType): StructType

    Permalink

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    schema

    schema of the input data frame

    returns

    a new schema with the output features added

    Definition Classes
    OpPipelineStageBase
  114. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  115. implicit val tti1: scala.reflect.api.JavaUniverse.TypeTag[RealNN]

    Permalink
    Definition Classes
    OpPredictorWrapper
  116. implicit val tti2: scala.reflect.api.JavaUniverse.TypeTag[OPVector]

    Permalink
    Definition Classes
    OpPredictorWrapper
  117. implicit val tto: scala.reflect.api.JavaUniverse.TypeTag[Prediction]

    Permalink

    Type tag of the output

    Type tag of the output

    Definition Classes
    OpPredictorWrapper → HasOut
  118. implicit val ttov: scala.reflect.api.JavaUniverse.TypeTag[Map[String, Double]]

    Permalink

    Type tag of the output value

    Type tag of the output value

    Definition Classes
    OpPredictorWrapper → HasOut
  119. val uid: String

    Permalink

    stage uid

    stage uid

    Definition Classes
    OpPredictorWrapper → Identifiable
  120. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PredictorParams
  121. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  122. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  123. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  124. final val weightCol: Param[String]

    Permalink
    Definition Classes
    HasWeightCol
  125. final def write: MLWriter

    Permalink
    Definition Classes
    OpPipelineStageBase → MLWritable

Inherited from OpNaiveBayesParams

Inherited from NaiveBayesParams

Inherited from HasWeightCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from OpPredictorWrapper[NaiveBayes, NaiveBayesModel]

Inherited from SparkWrapperParams[NaiveBayes]

Inherited from HasOut[Prediction]

Inherited from HasIn2

Inherited from HasIn1

Inherited from OpPipelineStage[Prediction]

Inherited from OpPipelineStageBase

Inherited from MLWritable

Inherited from OpPipelineStageParams

Inherited from InputParams

Inherited from Estimator[OpPredictorWrapperModel[NaiveBayesModel]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

setParam

Ungrouped