Class

com.salesforce.op.stages.impl.classification

OpXGBoostClassifier

Related Doc: package classification

Permalink

class OpXGBoostClassifier extends OpPredictorWrapper[XGBoostClassifier, XGBoostClassificationModel] with OpXGBoostClassifierParams

Wrapper around XGBoost classifier XGBoostClassifier

Linear Supertypes
OpXGBoostClassifierParams, OpXGBoostGeneralParamsDefaults, XGBoostClassifierParams, NonParamVariables, HasContribPredictionCol, HasLeafPredictionCol, ParamMapFuncs, HasNumClass, HasBaseMarginCol, HasWeightCol, BoosterParams, LearningTaskParams, GeneralParams, OpPredictorWrapper[XGBoostClassifier, XGBoostClassificationModel], SparkWrapperParams[XGBoostClassifier], OpPipelineStage2[RealNN, OPVector, Prediction], HasOut[Prediction], HasIn2, HasIn1, OpPipelineStage[Prediction], OpPipelineStageBase, MLWritable, OpPipelineStageParams, InputParams, Estimator[OpPredictorWrapperModel[XGBoostClassificationModel]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OpXGBoostClassifier
  2. OpXGBoostClassifierParams
  3. OpXGBoostGeneralParamsDefaults
  4. XGBoostClassifierParams
  5. NonParamVariables
  6. HasContribPredictionCol
  7. HasLeafPredictionCol
  8. ParamMapFuncs
  9. HasNumClass
  10. HasBaseMarginCol
  11. HasWeightCol
  12. BoosterParams
  13. LearningTaskParams
  14. GeneralParams
  15. OpPredictorWrapper
  16. SparkWrapperParams
  17. OpPipelineStage2
  18. HasOut
  19. HasIn2
  20. HasIn1
  21. OpPipelineStage
  22. OpPipelineStageBase
  23. MLWritable
  24. OpPipelineStageParams
  25. InputParams
  26. Estimator
  27. PipelineStage
  28. Logging
  29. Params
  30. Serializable
  31. Serializable
  32. Identifiable
  33. AnyRef
  34. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OpXGBoostClassifier(uid: String = UID[OpXGBoostClassifier])

    Permalink

Type Members

  1. final type InputFeatures = (FeatureLike[RealNN], FeatureLike[OPVector])

    Permalink

    Input Features type

    Input Features type

    Definition Classes
    OpPipelineStage2OpPipelineStageInputParams
  2. final type OutputFeatures = FeatureLike[Prediction]

    Permalink
    Definition Classes
    OpPipelineStageOpPipelineStageBase

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. def MLlib2XGBoostParams: Map[String, Any]

    Permalink
    Definition Classes
    ParamMapFuncs
  6. def XGBoostToMLlibParams(xgboostParams: Map[String, Any]): Unit

    Permalink
    Definition Classes
    ParamMapFuncs
  7. final val alpha: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. final val baseMarginCol: Param[String]

    Permalink
    Definition Classes
    HasBaseMarginCol
  10. final val baseScore: DoubleParam

    Permalink
    Definition Classes
    LearningTaskParams
  11. final val cacheTrainingSet: BooleanParam

    Permalink
    Definition Classes
    LearningTaskParams
  12. final def checkInputLength(features: Array[_]): Boolean

    Permalink

    Checks the input length

    Checks the input length

    features

    input features

    returns

    true is input size as expected, false otherwise

    Definition Classes
    OpPipelineStage2InputParams
  13. def checkSerializable: Try[Unit]

    Permalink

    Check if the stage is serializable

    Check if the stage is serializable

    returns

    Failure if not serializable

    Definition Classes
    OpPipelineStageBase
  14. final val checkpointInterval: IntParam

    Permalink
    Definition Classes
    GeneralParams
  15. final val checkpointPath: Param[String]

    Permalink
    Definition Classes
    GeneralParams
  16. final def clear(param: Param[_]): OpXGBoostClassifier.this.type

    Permalink
    Definition Classes
    Params
  17. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  18. final val colsampleBylevel: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  19. final val colsampleBytree: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  20. final val contribPredictionCol: Param[String]

    Permalink
    Definition Classes
    HasContribPredictionCol
  21. final def copy(extra: ParamMap): OpXGBoostClassifier.this.type

    Permalink

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    Note: that the convention in spark is to have the uid be a constructor argument, so that copies will share a uid with the original (developers should follow this convention).

    extra

    new parameters want to add to instance

    returns

    a new instance with the same uid

    Definition Classes
    OpPipelineStageBase → Params
  22. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  23. final val customEval: CustomEvalParam

    Permalink
    Definition Classes
    GeneralParams
  24. final val customObj: CustomObjParam

    Permalink
    Definition Classes
    GeneralParams
  25. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  26. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  28. final val eta: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  29. final val evalMetric: Param[String]

    Permalink
    Definition Classes
    LearningTaskParams
  30. var evalSetsMap: Map[String, DataFrame]

    Permalink
    Attributes
    protected
    Definition Classes
    NonParamVariables
  31. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  32. def explainParams(): String

    Permalink
    Definition Classes
    Params
  33. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  34. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  35. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  36. def fit(dataset: Dataset[_]): OpPredictorWrapperModel[XGBoostClassificationModel]

    Permalink

    Function that fits the binary model

    Function that fits the binary model

    Definition Classes
    OpPredictorWrapper → Estimator
  37. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[OpPredictorWrapperModel[XGBoostClassificationModel]]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  38. def fit(dataset: Dataset[_], paramMap: ParamMap): OpPredictorWrapperModel[XGBoostClassificationModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  39. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OpPredictorWrapperModel[XGBoostClassificationModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  40. final val gamma: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  41. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  42. final def getAlpha: Double

    Permalink
    Definition Classes
    BoosterParams
  43. final def getBaseMarginCol: String

    Permalink
    Definition Classes
    HasBaseMarginCol
  44. final def getBaseScore: Double

    Permalink
    Definition Classes
    LearningTaskParams
  45. final def getCheckpointInterval: Int

    Permalink
    Definition Classes
    GeneralParams
  46. final def getCheckpointPath: String

    Permalink
    Definition Classes
    GeneralParams
  47. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  48. final def getColsampleBylevel: Double

    Permalink
    Definition Classes
    BoosterParams
  49. final def getColsampleBytree: Double

    Permalink
    Definition Classes
    BoosterParams
  50. final def getContribPredictionCol: String

    Permalink
    Definition Classes
    HasContribPredictionCol
  51. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  52. final def getEta: Double

    Permalink
    Definition Classes
    BoosterParams
  53. final def getEvalMetric: String

    Permalink
    Definition Classes
    LearningTaskParams
  54. def getEvalSets(params: Map[String, Any]): Map[String, DataFrame]

    Permalink
    Definition Classes
    NonParamVariables
  55. final def getGamma: Double

    Permalink
    Definition Classes
    BoosterParams
  56. final def getGrowPolicy: String

    Permalink
    Definition Classes
    BoosterParams
  57. def getInputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control input columns for Spark stage

    Gets names of parameters that control input columns for Spark stage

    Definition Classes
    SparkWrapperParams
  58. final def getInputFeature[T <: FeatureType](i: Int): Option[FeatureLike[T]]

    Permalink

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  59. final def getInputFeatures(): Array[OPFeature]

    Permalink

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  60. final def getInputSchema(): StructType

    Permalink
    Definition Classes
    OpPipelineStageParams
  61. final def getInteractionConstraints: String

    Permalink
    Definition Classes
    BoosterParams
  62. final def getLambda: Double

    Permalink
    Definition Classes
    BoosterParams
  63. final def getLambdaBias: Double

    Permalink
    Definition Classes
    BoosterParams
  64. final def getLeafPredictionCol: String

    Permalink
    Definition Classes
    HasLeafPredictionCol
  65. def getLocalMlStage(): Option[Transformer]

    Permalink

    Method to access the local version of stage being wrapped

    Method to access the local version of stage being wrapped

    returns

    Option of ml leap runtime version of the spark stage after reloading as local

    Definition Classes
    SparkWrapperParams
  66. final def getMaxBins: Int

    Permalink
    Definition Classes
    BoosterParams
  67. final def getMaxDeltaStep: Double

    Permalink
    Definition Classes
    BoosterParams
  68. final def getMaxDepth: Int

    Permalink
    Definition Classes
    BoosterParams
  69. final def getMaxLeaves: Int

    Permalink
    Definition Classes
    BoosterParams
  70. final def getMaximizeEvaluationMetrics: Boolean

    Permalink
    Definition Classes
    LearningTaskParams
  71. final def getMetadata(): Metadata

    Permalink
    Definition Classes
    OpPipelineStageParams
  72. final def getMinChildWeight: Double

    Permalink
    Definition Classes
    BoosterParams
  73. final def getMissing: Float

    Permalink
    Definition Classes
    GeneralParams
  74. final def getMonotoneConstraints: String

    Permalink
    Definition Classes
    BoosterParams
  75. final def getNormalizeType: String

    Permalink
    Definition Classes
    BoosterParams
  76. final def getNthread: Int

    Permalink
    Definition Classes
    GeneralParams
  77. final def getNumClass: Int

    Permalink
    Definition Classes
    HasNumClass
  78. final def getNumEarlyStoppingRounds: Int

    Permalink
    Definition Classes
    LearningTaskParams
  79. final def getNumRound: Int

    Permalink
    Definition Classes
    GeneralParams
  80. final def getNumWorkers: Int

    Permalink
    Definition Classes
    GeneralParams
  81. final def getObjective: String

    Permalink
    Definition Classes
    LearningTaskParams
  82. final def getObjectiveType: String

    Permalink
    Definition Classes
    LearningTaskParams
  83. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  84. def getOutput(): FeatureLike[Prediction]

    Permalink

    Output features that will be created by this stage

    Output features that will be created by this stage

    returns

    feature of type OutputFeatures

    Definition Classes
    HasOut → OpPipelineStageBase
  85. def getOutputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control output columns for Spark stage

    Gets names of parameters that control output columns for Spark stage

    Definition Classes
    SparkWrapperParams
  86. final def getOutputFeatureName: String

    Permalink

    Name of output feature (i.e.

    Name of output feature (i.e. column created by this stage)

    Definition Classes
    OpPipelineStage
  87. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  88. final def getRateDrop: Double

    Permalink
    Definition Classes
    BoosterParams
  89. final def getSampleType: String

    Permalink
    Definition Classes
    BoosterParams
  90. final def getScalePosWeight: Double

    Permalink
    Definition Classes
    BoosterParams
  91. final def getSeed: Long

    Permalink
    Definition Classes
    GeneralParams
  92. final def getSilent: Int

    Permalink
    Definition Classes
    GeneralParams
  93. final def getSketchEps: Double

    Permalink
    Definition Classes
    BoosterParams
  94. final def getSkipDrop: Double

    Permalink
    Definition Classes
    BoosterParams
  95. def getSparkMlStage(): Option[XGBoostClassifier]

    Permalink

    Method to access the spark stage being wrapped

    Method to access the spark stage being wrapped

    returns

    Option of spark ml stage

    Definition Classes
    SparkWrapperParams
  96. def getStageSavePath(): Option[String]

    Permalink

    Gets a save path for wrapped spark stage

    Gets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  97. final def getSubsample: Double

    Permalink
    Definition Classes
    BoosterParams
  98. final def getTimeoutRequestWorkers: Long

    Permalink
    Definition Classes
    GeneralParams
  99. final def getTrainTestRatio: Double

    Permalink
    Definition Classes
    LearningTaskParams
  100. final def getTransientFeature(i: Int): Option[TransientFeature]

    Permalink

    Gets an input feature at index i

    Gets an input feature at index i

    i

    input index

    returns

    maybe an input feature

    Definition Classes
    InputParams
  101. final def getTransientFeatures(): Array[TransientFeature]

    Permalink

    Gets the input Features

    Gets the input Features

    returns

    input features

    Definition Classes
    InputParams
  102. final def getTreeLimit: Int

    Permalink
    Definition Classes
    BoosterParams
  103. final def getTreeMethod: String

    Permalink
    Definition Classes
    BoosterParams
  104. final def getUseExternalMemory: Boolean

    Permalink
    Definition Classes
    GeneralParams
  105. final def getVerbosity: Int

    Permalink
    Definition Classes
    GeneralParams
  106. final def getWeightCol: String

    Permalink
    Definition Classes
    HasWeightCol
  107. final val growPolicy: Param[String]

    Permalink
    Definition Classes
    BoosterParams
  108. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  109. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  110. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  111. final def in1: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn1
  112. final def in2: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn2
  113. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  114. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  115. final def inputAsArray(in: InputFeatures): Array[OPFeature]

    Permalink

    Function to convert InputFeatures to an Array of FeatureLike

    Function to convert InputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStage2InputParams
  116. val inputParam1Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  117. val inputParam2Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  118. final val interactionConstraints: Param[String]

    Permalink
    Definition Classes
    BoosterParams
  119. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  120. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  121. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  122. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  123. final val lambda: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  124. final val lambdaBias: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  125. final val leafPredictionCol: Param[String]

    Permalink
    Definition Classes
    HasLeafPredictionCol
  126. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  127. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  128. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  129. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  130. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  131. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  132. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  133. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  134. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  135. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  136. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  137. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  138. final val maxBins: IntParam

    Permalink
    Definition Classes
    BoosterParams
  139. final val maxDeltaStep: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  140. final val maxDepth: IntParam

    Permalink
    Definition Classes
    BoosterParams
  141. final val maxLeaves: IntParam

    Permalink
    Definition Classes
    BoosterParams
  142. final val maximizeEvaluationMetrics: BooleanParam

    Permalink
    Definition Classes
    LearningTaskParams
  143. final val minChildWeight: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  144. final val missing: FloatParam

    Permalink
    Definition Classes
    GeneralParams
  145. final val monotoneConstraints: Param[String]

    Permalink
    Definition Classes
    BoosterParams
  146. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  147. final val normalizeType: Param[String]

    Permalink
    Definition Classes
    BoosterParams
  148. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  149. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  150. final val nthread: IntParam

    Permalink
    Definition Classes
    GeneralParams
  151. final val numClass: IntParam

    Permalink
    Definition Classes
    HasNumClass
  152. final val numEarlyStoppingRounds: IntParam

    Permalink
    Definition Classes
    LearningTaskParams
  153. final val numRound: IntParam

    Permalink
    Definition Classes
    GeneralParams
  154. final val numWorkers: IntParam

    Permalink
    Definition Classes
    GeneralParams
  155. final val objective: Param[String]

    Permalink
    Definition Classes
    LearningTaskParams
  156. final val objectiveType: Param[String]

    Permalink
    Definition Classes
    LearningTaskParams
  157. def onGetMetadata(): Unit

    Permalink

    Function to be called on getMetadata

    Function to be called on getMetadata

    Attributes
    protected
    Definition Classes
    OpPipelineStageParams
  158. def onSetInput(): Unit

    Permalink

    Function to be called on setInput

    Function to be called on setInput

    Attributes
    protected
    Definition Classes
    OpXGBoostClassifierInputParams
  159. val operationName: String

    Permalink

    Short unique name of the operation this stage performs

    Short unique name of the operation this stage performs

    returns

    operation name

    Definition Classes
    OpPredictorWrapperOpPipelineStageBase
  160. final def outputAsArray(out: OutputFeatures): Array[OPFeature]

    Permalink

    Function to convert OutputFeatures to an Array of FeatureLike

    Function to convert OutputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStageOpPipelineStageBase
  161. def outputFeatureUid: String

    Permalink
    Attributes
    protected[com.salesforce.op]
    Definition Classes
    OpPipelineStage2OpPipelineStage
  162. def outputIsResponse: Boolean

    Permalink

    Should output feature be a response? Yes, if any of the input features are.

    Should output feature be a response? Yes, if any of the input features are.

    returns

    true if the the output feature should be a response

    Definition Classes
    OpPipelineStage
  163. val outputParamName: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  164. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  165. val predictor: XGBoostClassifier

    Permalink

    the predictor to wrap

    the predictor to wrap

    Definition Classes
    OpPredictorWrapper
  166. final val rateDrop: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  167. final val sampleType: Param[String]

    Permalink
    Definition Classes
    BoosterParams
  168. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  169. final val scalePosWeight: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  170. final val seed: LongParam

    Permalink
    Definition Classes
    GeneralParams
  171. final def set(paramPair: ParamPair[_]): OpXGBoostClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  172. final def set(param: String, value: Any): OpXGBoostClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  173. final def set[T](param: Param[T], value: T): OpXGBoostClassifier.this.type

    Permalink
    Definition Classes
    Params
  174. def setAlpha(value: Double): OpXGBoostClassifier.this.type

    Permalink

    L1 regularization term on weights, increase this value will make model more conservative.

    L1 regularization term on weights, increase this value will make model more conservative. [default=0]

  175. def setBaseMarginCol(value: String): OpXGBoostClassifier.this.type

    Permalink

    Initial prediction (aka base margin) column name.

  176. def setBaseScore(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Specify the learning task and the corresponding learning objective.

    Specify the learning task and the corresponding learning objective. options: reg:linear, reg:logistic, binary:logistic, binary:logitraw, count:poisson, multi:softmax, multi:softprob, rank:pairwise, reg:gamma. default: reg:linear

  177. def setCheckpointInterval(value: Int): OpXGBoostClassifier.this.type

    Permalink

    Checkpoint interval (>= 1) or disable checkpoint (-1).

    Checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the trained model will get checkpointed every 10 iterations. Note: checkpoint_path must also be set if the checkpoint interval is greater than 0.

  178. def setCheckpointPath(value: String): OpXGBoostClassifier.this.type

    Permalink

    The hdfs folder to load and save checkpoint boosters.

    The hdfs folder to load and save checkpoint boosters. default: empty_string

  179. def setColsampleBylevel(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Subsample ratio of columns for each split, in each level.

    Subsample ratio of columns for each split, in each level. [default=1] range: (0,1]

  180. def setColsampleBytree(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Subsample ratio of columns when constructing each tree.

    Subsample ratio of columns when constructing each tree. [default=1] range: (0,1]

  181. def setCustomEval(value: EvalTrait): OpXGBoostClassifier.this.type

    Permalink

    Customized evaluation function provided by user.

    Customized evaluation function provided by user. default: null

  182. def setCustomObj(value: ObjectiveTrait): OpXGBoostClassifier.this.type

    Permalink

    Customized objective function provided by user.

    Customized objective function provided by user. default: null

  183. final def setDefault(paramPairs: ParamPair[_]*): OpXGBoostClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  184. final def setDefault[T](param: Param[T], value: T): OpXGBoostClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  185. def setEta(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Step size shrinkage used in update to prevents overfitting.

    Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get the weights of new features and eta actually shrinks the feature weights to make the boosting process more conservative. [default=0.3] range: [0,1]

  186. def setEvalMetric(value: String): OpXGBoostClassifier.this.type

    Permalink

    Evaluation metrics for validation data, a default metric will be assigned according to objective(rmse for regression, and error for classification, mean average precision for ranking).

    Evaluation metrics for validation data, a default metric will be assigned according to objective(rmse for regression, and error for classification, mean average precision for ranking). options: rmse, mae, logloss, error, merror, mlogloss, auc, aucpr, ndcg, map, gamma-deviance

  187. def setEvalSets(evalSets: Map[String, DataFrame]): OpXGBoostClassifier.this.type

    Permalink
    Definition Classes
    NonParamVariables
  188. def setGamma(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Minimum loss reduction required to make a further partition on a leaf node of the tree.

    Minimum loss reduction required to make a further partition on a leaf node of the tree. the larger, the more conservative the algorithm will be. [default=0] range: [0, Double.MaxValue]

  189. def setGrowPolicy(value: String): OpXGBoostClassifier.this.type

    Permalink

    Growth policy for fast histogram algorithm

  190. final def setInput(features: InputFeatures): OpXGBoostClassifier.this.type

    Permalink

    Input features that will be used by the stage

    Input features that will be used by the stage

    returns

    feature of type InputFeatures

    Definition Classes
    OpPipelineStageBase
  191. final def setInputFeatures[S <: OPFeature](features: Array[S]): OpXGBoostClassifier.this.type

    Permalink

    Sets input features

    Sets input features

    S

    feature like type

    features

    array of input features

    returns

    this stage

    Attributes
    protected
    Definition Classes
    InputParams
  192. def setLambda(value: Double): OpXGBoostClassifier.this.type

    Permalink

    L2 regularization term on weights, increase this value will make model more conservative.

    L2 regularization term on weights, increase this value will make model more conservative. [default=1]

  193. def setLambdaBias(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Parameter of linear booster L2 regularization term on bias, default 0(no L1 reg on bias because it is not important)

  194. def setMaxBins(value: Int): OpXGBoostClassifier.this.type

    Permalink

    Maximum number of bins in histogram

  195. def setMaxDeltaStep(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Maximum delta step we allow each tree's weight estimation to be.

    Maximum delta step we allow each tree's weight estimation to be. If the value is set to 0, it means there is no constraint. If it is set to a positive value, it can help making the update step more conservative. Usually this parameter is not needed, but it might help in logistic regression when class is extremely imbalanced. Set it to value of 1-10 might help control the update. [default=0] range: [0, Double.MaxValue]

  196. def setMaxDepth(value: Int): OpXGBoostClassifier.this.type

    Permalink

    Maximum depth of a tree, increase this value will make model more complex / likely to be overfitting.

    Maximum depth of a tree, increase this value will make model more complex / likely to be overfitting. [default=6] range: [1, Int.MaxValue]

  197. def setMaxLeaves(value: Int): OpXGBoostClassifier.this.type

    Permalink

    Maximum number of nodes to be added.

    Maximum number of nodes to be added. Only relevant when grow_policy=lossguide is set.

  198. def setMaximizeEvaluationMetrics(value: Boolean): OpXGBoostClassifier.this.type

    Permalink

    Define the expected optimization to the evaluation metrics, true to maximize otherwise minimize it

  199. final def setMetadata(m: Metadata): OpXGBoostClassifier.this.type

    Permalink
    Definition Classes
    OpPipelineStageParams
  200. def setMinChildWeight(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Minimum sum of instance weight(hessian) needed in a child.

    Minimum sum of instance weight(hessian) needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression mode, this simply corresponds to minimum number of instances needed to be in each node. The larger, the more conservative the algorithm will be. [default=1] range: [0, Double.MaxValue]

  201. def setMissing(value: Float): OpXGBoostClassifier.this.type

    Permalink

    The value treated as missing

  202. def setNormalizeType(value: String): OpXGBoostClassifier.this.type

    Permalink

    Parameter of Dart booster.

    Parameter of Dart booster. type of normalization algorithm, options: {'tree', 'forest'}. [default="tree"]

  203. def setNthread(value: Int): OpXGBoostClassifier.this.type

    Permalink

    Number of threads used by per worker.

    Number of threads used by per worker. default 1

  204. def setNumClass(value: Int): OpXGBoostClassifier.this.type

    Permalink

    Number of classes

  205. def setNumEarlyStoppingRounds(value: Int): OpXGBoostClassifier.this.type

    Permalink

    If non-zero, the training will be stopped after a specified number of consecutive increases in any evaluation metric.

  206. def setNumRound(value: Int): OpXGBoostClassifier.this.type

    Permalink

    The number of rounds for boosting

  207. def setNumWorkers(value: Int): OpXGBoostClassifier.this.type

    Permalink

    Number of workers used to train xgboost model.

    Number of workers used to train xgboost model. default: 1

  208. def setObjective(value: String): OpXGBoostClassifier.this.type

    Permalink

    Specify the learning task and the corresponding learning objective.

    Specify the learning task and the corresponding learning objective. options: reg:squarederror, reg:logistic, binary:logistic, binary:logitraw, count:poisson, multi:softmax, multi:softprob, rank:pairwise, reg:gamma. default: reg:squarederror

  209. def setObjectiveType(value: String): OpXGBoostClassifier.this.type

    Permalink

    Objective type used for training.

    Objective type used for training. For options see ml.dmlc.xgboost4j.scala.spark.params.LearningTaskParams

  210. def setOutputDF(df: DataFrame): Unit

    Permalink
    Definition Classes
    SparkWrapperParams
  211. def setOutputFeatureName(name: String): OpXGBoostClassifier.this.type

    Permalink
    Definition Classes
    OpPipelineStage
  212. def setRateDrop(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Parameter of Dart booster.

    Parameter of Dart booster. dropout rate. [default=0.0] range: [0.0, 1.0]

  213. def setSampleType(value: String): OpXGBoostClassifier.this.type

    Permalink

    Parameter for Dart booster.

    Parameter for Dart booster. Type of sampling algorithm. "uniform": dropped trees are selected uniformly. "weighted": dropped trees are selected in proportion to weight. [default="uniform"]

  214. def setScalePosWeight(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Control the balance of positive and negative weights, useful for unbalanced classes.

    Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases). [default=1]

  215. def setSeed(value: Long): OpXGBoostClassifier.this.type

    Permalink

    Random seed for the C++ part of XGBoost and train/test splitting.

  216. def setSilent(value: Int): OpXGBoostClassifier.this.type

    Permalink

    0 means printing running messages, 1 means silent mode.

    0 means printing running messages, 1 means silent mode. default: 0

  217. def setSketchEps(value: Double): OpXGBoostClassifier.this.type

    Permalink

    This is only used for approximate greedy algorithm.

    This is only used for approximate greedy algorithm. This roughly translated into O(1 / sketch_eps) number of bins. Compared to directly select number of bins, this comes with theoretical guarantee with sketch accuracy. [default=0.03] range: (0, 1)

  218. def setSkipDrop(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Parameter of Dart booster.

    Parameter of Dart booster. probability of skip dropout. If a dropout is skipped, new trees are added in the same manner as gbtree. [default=0.0] range: [0.0, 1.0]

  219. def setSparkMlStage(stage: Option[XGBoostClassifier]): OpXGBoostClassifier.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    SparkWrapperParams
  220. def setStageSavePath(path: String): OpXGBoostClassifier.this.type

    Permalink

    Sets a save path for wrapped spark stage

    Sets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  221. def setSubsample(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Subsample ratio of the training instance.

    Subsample ratio of the training instance. Setting it to 0.5 means that XGBoost randomly collected half of the data instances to grow trees and this will prevent overfitting. [default=1] range:(0,1]

  222. def setTimeoutRequestWorkers(value: Long): OpXGBoostClassifier.this.type

    Permalink

    The maximum time to wait for the job requesting new workers.

    The maximum time to wait for the job requesting new workers. default: 30 minutes

  223. def setTrackerConf(value: TrackerConf): OpXGBoostClassifier.this.type

    Permalink

    Rabit tracker configurations.

    Rabit tracker configurations. The parameter must be provided as an instance of the TrackerConf class, which has the following definition:

    case class TrackerConf(workerConnectionTimeout: Duration, trainingTimeout: Duration, trackerImpl: String)

    See below for detailed explanations.

    • trackerImpl: Select the implementation of Rabit tracker. default: "python"

    Choice between "python" or "scala". The former utilizes the Java wrapper of the Python Rabit tracker (in dmlc_core), and does not support timeout settings. The "scala" version removes Python components, and fully supports timeout settings.

    • workerConnectionTimeout: the maximum wait time for all workers to connect to the tracker. default: 0 millisecond (no timeout)

    The timeout value should take the time of data loading and pre-processing into account, due to the lazy execution of Spark's operations. Alternatively, you may force Spark to perform data transformation before calling XGBoost.train(), so that this timeout truly reflects the connection delay. Set a reasonable timeout value to prevent model training/testing from hanging indefinitely, possible due to network issues. Note that zero timeout value means to wait indefinitely (equivalent to Duration.Inf). Ignored if the tracker implementation is "python".

  224. def setTrainTestRatio(value: Double): OpXGBoostClassifier.this.type

    Permalink

    Fraction of training points to use for testing.

  225. def setTreeMethod(value: String): OpXGBoostClassifier.this.type

    Permalink

    The tree construction algorithm used in XGBoost.

    The tree construction algorithm used in XGBoost. options: {'auto', 'exact', 'approx'} [default='auto']

  226. def setUseExternalMemory(value: Boolean): OpXGBoostClassifier.this.type

    Permalink

    Whether to use external memory as cache.

    Whether to use external memory as cache. default: false

  227. def setWeightCol(value: String): OpXGBoostClassifier.this.type

    Permalink

    Weight column name.

    Weight column name. If this is not set or empty, we treat all instance weights as 1.0.

  228. final val silent: IntParam

    Permalink
    Definition Classes
    GeneralParams
  229. final val sketchEps: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  230. final val skipDrop: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  231. final val sparkInputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  232. final val sparkMlStage: SparkStageParam[XGBoostClassifier]

    Permalink
    Definition Classes
    SparkWrapperParams
  233. final val sparkOutputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  234. final def stageName: String

    Permalink

    Stage unique name consisting of the stage operation name and uid

    Stage unique name consisting of the stage operation name and uid

    returns

    stage name

    Definition Classes
    OpPipelineStageBase
  235. final val subsample: DoubleParam

    Permalink
    Definition Classes
    BoosterParams
  236. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  237. final val timeoutRequestWorkers: LongParam

    Permalink
    Definition Classes
    GeneralParams
  238. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  239. final val trackerConf: TrackerConfParam

    Permalink
    Definition Classes
    GeneralParams
  240. final val trainTestRatio: DoubleParam

    Permalink
    Definition Classes
    LearningTaskParams
  241. final def transformSchema(schema: StructType): StructType

    Permalink

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    schema

    schema of the input data frame

    returns

    a new schema with the output features added

    Definition Classes
    OpPipelineStageBase
  242. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  243. final val treeLimit: IntParam

    Permalink
    Definition Classes
    BoosterParams
  244. final val treeMethod: Param[String]

    Permalink
    Definition Classes
    BoosterParams
  245. implicit val tti1: scala.reflect.api.JavaUniverse.TypeTag[RealNN]

    Permalink
    Definition Classes
    OpPredictorWrapper
  246. implicit val tti2: scala.reflect.api.JavaUniverse.TypeTag[OPVector]

    Permalink
    Definition Classes
    OpPredictorWrapper
  247. implicit val tto: scala.reflect.api.JavaUniverse.TypeTag[Prediction]

    Permalink

    Type tag of the output

    Type tag of the output

    Definition Classes
    OpPredictorWrapper → HasOut
  248. implicit val ttov: scala.reflect.api.JavaUniverse.TypeTag[Map[String, Double]]

    Permalink

    Type tag of the output value

    Type tag of the output value

    Definition Classes
    OpPredictorWrapper → HasOut
  249. val uid: String

    Permalink

    stage uid

    stage uid

    Definition Classes
    OpPredictorWrapper → Identifiable
  250. final val useExternalMemory: BooleanParam

    Permalink
    Definition Classes
    GeneralParams
  251. final val verbosity: IntParam

    Permalink
    Definition Classes
    GeneralParams
  252. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  253. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  254. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  255. final val weightCol: Param[String]

    Permalink
    Definition Classes
    HasWeightCol
  256. final def write: MLWriter

    Permalink
    Definition Classes
    OpPipelineStageBase → MLWritable

Inherited from OpXGBoostClassifierParams

Inherited from XGBoostClassifierParams

Inherited from NonParamVariables

Inherited from HasContribPredictionCol

Inherited from HasLeafPredictionCol

Inherited from ParamMapFuncs

Inherited from HasNumClass

Inherited from HasBaseMarginCol

Inherited from HasWeightCol

Inherited from BoosterParams

Inherited from LearningTaskParams

Inherited from GeneralParams

Inherited from OpPredictorWrapper[XGBoostClassifier, XGBoostClassificationModel]

Inherited from SparkWrapperParams[XGBoostClassifier]

Inherited from HasOut[Prediction]

Inherited from HasIn2

Inherited from HasIn1

Inherited from OpPipelineStage[Prediction]

Inherited from OpPipelineStageBase

Inherited from MLWritable

Inherited from OpPipelineStageParams

Inherited from InputParams

Inherited from Estimator[OpPredictorWrapperModel[XGBoostClassificationModel]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped