Class

com.salesforce.op.stages.impl.regression

OpGeneralizedLinearRegression

Related Doc: package regression

Permalink

class OpGeneralizedLinearRegression extends OpPredictorWrapper[GeneralizedLinearRegression, GeneralizedLinearRegressionModel] with OpGeneralizedLinearRegressionParams

Wrapper for spark Generalized Regression org.apache.spark.ml.regression.GeneralizedLinearRegression

Linear Supertypes
OpGeneralizedLinearRegressionParams, GeneralizedLinearRegressionBase, HasSolver, HasWeightCol, HasRegParam, HasTol, HasMaxIter, HasFitIntercept, PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, OpPredictorWrapper[GeneralizedLinearRegression, GeneralizedLinearRegressionModel], SparkWrapperParams[GeneralizedLinearRegression], OpPipelineStage2[RealNN, OPVector, Prediction], HasOut[Prediction], HasIn2, HasIn1, OpPipelineStage[Prediction], OpPipelineStageBase, MLWritable, OpPipelineStageParams, InputParams, Estimator[OpPredictorWrapperModel[GeneralizedLinearRegressionModel]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OpGeneralizedLinearRegression
  2. OpGeneralizedLinearRegressionParams
  3. GeneralizedLinearRegressionBase
  4. HasSolver
  5. HasWeightCol
  6. HasRegParam
  7. HasTol
  8. HasMaxIter
  9. HasFitIntercept
  10. PredictorParams
  11. HasPredictionCol
  12. HasFeaturesCol
  13. HasLabelCol
  14. OpPredictorWrapper
  15. SparkWrapperParams
  16. OpPipelineStage2
  17. HasOut
  18. HasIn2
  19. HasIn1
  20. OpPipelineStage
  21. OpPipelineStageBase
  22. MLWritable
  23. OpPipelineStageParams
  24. InputParams
  25. Estimator
  26. PipelineStage
  27. Logging
  28. Params
  29. Serializable
  30. Serializable
  31. Identifiable
  32. AnyRef
  33. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OpGeneralizedLinearRegression(uid: String = UID[OpGeneralizedLinearRegression])

    Permalink

    uid

    stage uid

Type Members

  1. final type InputFeatures = (FeatureLike[RealNN], FeatureLike[OPVector])

    Permalink

    Input Features type

    Input Features type

    Definition Classes
    OpPipelineStage2OpPipelineStageInputParams
  2. final type OutputFeatures = FeatureLike[Prediction]

    Permalink
    Definition Classes
    OpPipelineStageOpPipelineStageBase

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final def checkInputLength(features: Array[_]): Boolean

    Permalink

    Checks the input length

    Checks the input length

    features

    input features

    returns

    true is input size as expected, false otherwise

    Definition Classes
    OpPipelineStage2InputParams
  7. def checkSerializable: Try[Unit]

    Permalink

    Check if the stage is serializable

    Check if the stage is serializable

    returns

    Failure if not serializable

    Definition Classes
    OpPipelineStageBase
  8. final def clear(param: Param[_]): OpGeneralizedLinearRegression.this.type

    Permalink
    Definition Classes
    Params
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. final def copy(extra: ParamMap): OpGeneralizedLinearRegression.this.type

    Permalink

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    Note: that the convention in spark is to have the uid be a constructor argument, so that copies will share a uid with the original (developers should follow this convention).

    extra

    new parameters want to add to instance

    returns

    a new instance with the same uid

    Definition Classes
    OpPipelineStageBase → Params
  11. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  13. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  15. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  16. def explainParams(): String

    Permalink
    Definition Classes
    Params
  17. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  18. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  19. final val family: Param[String]

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.0.0" )
  20. final val featuresCol: Param[String]

    Permalink
    Definition Classes
    HasFeaturesCol
  21. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. def fit(dataset: Dataset[_]): OpPredictorWrapperModel[GeneralizedLinearRegressionModel]

    Permalink

    Function that fits the binary model

    Function that fits the binary model

    Definition Classes
    OpPredictorWrapper → Estimator
  23. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[OpPredictorWrapperModel[GeneralizedLinearRegressionModel]]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  24. def fit(dataset: Dataset[_], paramMap: ParamMap): OpPredictorWrapperModel[GeneralizedLinearRegressionModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  25. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OpPredictorWrapperModel[GeneralizedLinearRegressionModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  26. final val fitIntercept: BooleanParam

    Permalink
    Definition Classes
    HasFitIntercept
  27. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  28. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  29. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  30. def getFamily: String

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.0.0" )
  31. final def getFeaturesCol: String

    Permalink
    Definition Classes
    HasFeaturesCol
  32. final def getFitIntercept: Boolean

    Permalink
    Definition Classes
    HasFitIntercept
  33. def getInputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control input columns for Spark stage

    Gets names of parameters that control input columns for Spark stage

    Definition Classes
    SparkWrapperParams
  34. final def getInputFeature[T <: FeatureType](i: Int): Option[FeatureLike[T]]

    Permalink

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  35. final def getInputFeatures(): Array[OPFeature]

    Permalink

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  36. final def getInputSchema(): StructType

    Permalink
    Definition Classes
    OpPipelineStageParams
  37. final def getLabelCol: String

    Permalink
    Definition Classes
    HasLabelCol
  38. def getLink: String

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.0.0" )
  39. def getLinkPower: Double

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.2.0" )
  40. def getLinkPredictionCol: String

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.0.0" )
  41. def getLocalMlStage(): Option[Transformer]

    Permalink

    Method to access the local version of stage being wrapped

    Method to access the local version of stage being wrapped

    returns

    Option of ml leap runtime version of the spark stage after reloading as local

    Definition Classes
    SparkWrapperParams
  42. final def getMaxIter: Int

    Permalink
    Definition Classes
    HasMaxIter
  43. final def getMetadata(): Metadata

    Permalink
    Definition Classes
    OpPipelineStageParams
  44. def getOffsetCol: String

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.3.0" )
  45. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  46. def getOutput(): FeatureLike[Prediction]

    Permalink

    Output features that will be created by this stage

    Output features that will be created by this stage

    returns

    feature of type OutputFeatures

    Definition Classes
    HasOut → OpPipelineStageBase
  47. def getOutputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control output columns for Spark stage

    Gets names of parameters that control output columns for Spark stage

    Definition Classes
    SparkWrapperParams
  48. final def getOutputFeatureName: String

    Permalink

    Name of output feature (i.e.

    Name of output feature (i.e. column created by this stage)

    Definition Classes
    OpPipelineStage
  49. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  50. final def getPredictionCol: String

    Permalink
    Definition Classes
    HasPredictionCol
  51. final def getRegParam: Double

    Permalink
    Definition Classes
    HasRegParam
  52. final def getSolver: String

    Permalink
    Definition Classes
    HasSolver
  53. def getSparkMlStage(): Option[GeneralizedLinearRegression]

    Permalink

    Method to access the spark stage being wrapped

    Method to access the spark stage being wrapped

    returns

    Option of spark ml stage

    Definition Classes
    SparkWrapperParams
  54. def getStageSavePath(): Option[String]

    Permalink

    Gets a save path for wrapped spark stage

    Gets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  55. final def getTol: Double

    Permalink
    Definition Classes
    HasTol
  56. final def getTransientFeature(i: Int): Option[TransientFeature]

    Permalink

    Gets an input feature at index i

    Gets an input feature at index i

    i

    input index

    returns

    maybe an input feature

    Definition Classes
    InputParams
  57. final def getTransientFeatures(): Array[TransientFeature]

    Permalink

    Gets the input Features

    Gets the input Features

    returns

    input features

    Definition Classes
    InputParams
  58. def getVariancePower: Double

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.2.0" )
  59. final def getWeightCol: String

    Permalink
    Definition Classes
    HasWeightCol
  60. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  61. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  62. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  63. final def in1: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn1
  64. final def in2: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn2
  65. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  66. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  67. final def inputAsArray(in: InputFeatures): Array[OPFeature]

    Permalink

    Function to convert InputFeatures to an Array of FeatureLike

    Function to convert InputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStage2InputParams
  68. val inputParam1Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  69. val inputParam2Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  70. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  71. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  72. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  73. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. final val labelCol: Param[String]

    Permalink
    Definition Classes
    HasLabelCol
  75. final val link: Param[String]

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.0.0" )
  76. final val linkPower: DoubleParam

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.2.0" )
  77. final val linkPredictionCol: Param[String]

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.0.0" )
  78. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  82. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  83. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  84. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  85. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  86. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  87. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  88. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  89. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  90. final val maxIter: IntParam

    Permalink
    Definition Classes
    HasMaxIter
  91. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  92. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  93. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  94. final val offsetCol: Param[String]

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.3.0" )
  95. def onGetMetadata(): Unit

    Permalink

    Function to be called on getMetadata

    Function to be called on getMetadata

    Attributes
    protected
    Definition Classes
    OpPipelineStageParams
  96. def onSetInput(): Unit

    Permalink

    Function to be called on setInput

    Function to be called on setInput

    Attributes
    protected
    Definition Classes
    OpGeneralizedLinearRegressionInputParams
  97. val operationName: String

    Permalink

    Short unique name of the operation this stage performs

    Short unique name of the operation this stage performs

    returns

    operation name

    Definition Classes
    OpPredictorWrapperOpPipelineStageBase
  98. final def outputAsArray(out: OutputFeatures): Array[OPFeature]

    Permalink

    Function to convert OutputFeatures to an Array of FeatureLike

    Function to convert OutputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStageOpPipelineStageBase
  99. def outputFeatureUid: String

    Permalink
    Attributes
    protected[com.salesforce.op]
    Definition Classes
    OpPipelineStage2OpPipelineStage
  100. def outputIsResponse: Boolean

    Permalink

    Should output feature be a response? Yes, if any of the input features are.

    Should output feature be a response? Yes, if any of the input features are.

    returns

    true if the the output feature should be a response

    Definition Classes
    OpPipelineStage
  101. val outputParamName: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  102. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  103. final val predictionCol: Param[String]

    Permalink
    Definition Classes
    HasPredictionCol
  104. val predictor: GeneralizedLinearRegression

    Permalink

    the predictor to wrap

    the predictor to wrap

    Definition Classes
    OpPredictorWrapper
  105. final val regParam: DoubleParam

    Permalink
    Definition Classes
    HasRegParam
  106. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  107. final def set(paramPair: ParamPair[_]): OpGeneralizedLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  108. final def set(param: String, value: Any): OpGeneralizedLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  109. final def set[T](param: Param[T], value: T): OpGeneralizedLinearRegression.this.type

    Permalink
    Definition Classes
    Params
  110. final def setDefault(paramPairs: ParamPair[_]*): OpGeneralizedLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  111. final def setDefault[T](param: Param[T], value: T): OpGeneralizedLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  112. def setFamily(value: String): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the value of param family.

    Sets the value of param family. Default is "gaussian".

  113. def setFitIntercept(value: Boolean): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets if we should fit the intercept.

    Sets if we should fit the intercept. Default is true.

  114. final def setInput(features: InputFeatures): OpGeneralizedLinearRegression.this.type

    Permalink

    Input features that will be used by the stage

    Input features that will be used by the stage

    returns

    feature of type InputFeatures

    Definition Classes
    OpPipelineStageBase
  115. final def setInputFeatures[S <: OPFeature](features: Array[S]): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets input features

    Sets input features

    S

    feature like type

    features

    array of input features

    returns

    this stage

    Attributes
    protected
    Definition Classes
    InputParams
  116. def setLink(value: String): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the value of param link.

    Sets the value of param link. Used only when family is not "tweedie".

  117. def setLinkPower(value: Double): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the value of param linkPower.

    Sets the value of param linkPower. Used only when family is "tweedie".

  118. def setLinkPredictionCol(value: String): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the link prediction (linear predictor) column name.

  119. def setMaxIter(value: Int): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the maximum number of iterations (applicable for solver "irls").

    Sets the maximum number of iterations (applicable for solver "irls"). Default is 25.

  120. final def setMetadata(m: Metadata): OpGeneralizedLinearRegression.this.type

    Permalink
    Definition Classes
    OpPipelineStageParams
  121. def setOutputDF(df: DataFrame): Unit

    Permalink
    Definition Classes
    SparkWrapperParams
  122. def setOutputFeatureName(name: String): OpGeneralizedLinearRegression.this.type

    Permalink
    Definition Classes
    OpPipelineStage
  123. def setRegParam(value: Double): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the regularization parameter for L2 regularization.

    Sets the regularization parameter for L2 regularization. The regularization term is

    $$ 0.5 * regParam * L2norm(coefficients)^2 $$
    Default is 0.0.

  124. def setSolver(value: String): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the solver algorithm used for optimization.

    Sets the solver algorithm used for optimization. Currently only supports "irls" which is also the default solver.

  125. def setSparkMlStage(stage: Option[GeneralizedLinearRegression]): OpGeneralizedLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    SparkWrapperParams
  126. def setStageSavePath(path: String): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets a save path for wrapped spark stage

    Sets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  127. def setTol(value: Double): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the convergence tolerance of iterations.

    Sets the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6.

  128. def setVariancePower(value: Double): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the value of param variancePower.

    Sets the value of param variancePower. Used only when family is "tweedie". Default is 0.0, which corresponds to the "gaussian" family.

  129. def setWeightCol(value: String): OpGeneralizedLinearRegression.this.type

    Permalink

    Sets the value of param weightCol.

    Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one. In the Binomial family, weights correspond to number of trials and should be integer. Non-integer weights are rounded to integer in AIC calculation.

  130. final val solver: Param[String]

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase → HasSolver
    Annotations
    @Since( "2.0.0" )
  131. final val sparkInputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  132. final val sparkMlStage: SparkStageParam[GeneralizedLinearRegression]

    Permalink
    Definition Classes
    SparkWrapperParams
  133. final val sparkOutputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  134. final def stageName: String

    Permalink

    Stage unique name consisting of the stage operation name and uid

    Stage unique name consisting of the stage operation name and uid

    returns

    stage name

    Definition Classes
    OpPipelineStageBase
  135. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  136. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  137. final val tol: DoubleParam

    Permalink
    Definition Classes
    HasTol
  138. final def transformSchema(schema: StructType): StructType

    Permalink

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    schema

    schema of the input data frame

    returns

    a new schema with the output features added

    Definition Classes
    OpPipelineStageBase
  139. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  140. implicit val tti1: scala.reflect.api.JavaUniverse.TypeTag[RealNN]

    Permalink
    Definition Classes
    OpPredictorWrapper
  141. implicit val tti2: scala.reflect.api.JavaUniverse.TypeTag[OPVector]

    Permalink
    Definition Classes
    OpPredictorWrapper
  142. implicit val tto: scala.reflect.api.JavaUniverse.TypeTag[Prediction]

    Permalink

    Type tag of the output

    Type tag of the output

    Definition Classes
    OpPredictorWrapper → HasOut
  143. implicit val ttov: scala.reflect.api.JavaUniverse.TypeTag[Map[String, Double]]

    Permalink

    Type tag of the output value

    Type tag of the output value

    Definition Classes
    OpPredictorWrapper → HasOut
  144. val uid: String

    Permalink

    stage uid

    stage uid

    Definition Classes
    OpPredictorWrapper → Identifiable
  145. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase → PredictorParams
    Annotations
    @Since( "2.0.0" )
  146. final val variancePower: DoubleParam

    Permalink
    Definition Classes
    GeneralizedLinearRegressionBase
    Annotations
    @Since( "2.2.0" )
  147. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  148. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  149. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  150. final val weightCol: Param[String]

    Permalink
    Definition Classes
    HasWeightCol
  151. final def write: MLWriter

    Permalink
    Definition Classes
    OpPipelineStageBase → MLWritable

Inherited from GeneralizedLinearRegressionBase

Inherited from HasSolver

Inherited from HasWeightCol

Inherited from HasRegParam

Inherited from HasTol

Inherited from HasMaxIter

Inherited from HasFitIntercept

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from OpPredictorWrapper[GeneralizedLinearRegression, GeneralizedLinearRegressionModel]

Inherited from SparkWrapperParams[GeneralizedLinearRegression]

Inherited from HasOut[Prediction]

Inherited from HasIn2

Inherited from HasIn1

Inherited from OpPipelineStage[Prediction]

Inherited from OpPipelineStageBase

Inherited from MLWritable

Inherited from OpPipelineStageParams

Inherited from InputParams

Inherited from Estimator[OpPredictorWrapperModel[GeneralizedLinearRegressionModel]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

setParam

Ungrouped