Class

com.salesforce.op.stages.impl.regression

OpLinearRegression

Related Doc: package regression

Permalink

class OpLinearRegression extends OpPredictorWrapper[LinearRegression, LinearRegressionModel] with OpLinearRegressionParams

Wrapper around spark ml linear regression org.apache.spark.ml.regression.LinearRegression

Linear Supertypes
OpLinearRegressionParams, LinearRegressionParams, HasLoss, HasAggregationDepth, HasSolver, HasWeightCol, HasStandardization, HasFitIntercept, HasTol, HasMaxIter, HasElasticNetParam, HasRegParam, PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, OpPredictorWrapper[LinearRegression, LinearRegressionModel], SparkWrapperParams[LinearRegression], OpPipelineStage2[RealNN, OPVector, Prediction], HasOut[Prediction], HasIn2, HasIn1, OpPipelineStage[Prediction], OpPipelineStageBase, MLWritable, OpPipelineStageParams, InputParams, Estimator[OpPredictorWrapperModel[LinearRegressionModel]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OpLinearRegression
  2. OpLinearRegressionParams
  3. LinearRegressionParams
  4. HasLoss
  5. HasAggregationDepth
  6. HasSolver
  7. HasWeightCol
  8. HasStandardization
  9. HasFitIntercept
  10. HasTol
  11. HasMaxIter
  12. HasElasticNetParam
  13. HasRegParam
  14. PredictorParams
  15. HasPredictionCol
  16. HasFeaturesCol
  17. HasLabelCol
  18. OpPredictorWrapper
  19. SparkWrapperParams
  20. OpPipelineStage2
  21. HasOut
  22. HasIn2
  23. HasIn1
  24. OpPipelineStage
  25. OpPipelineStageBase
  26. MLWritable
  27. OpPipelineStageParams
  28. InputParams
  29. Estimator
  30. PipelineStage
  31. Logging
  32. Params
  33. Serializable
  34. Serializable
  35. Identifiable
  36. AnyRef
  37. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OpLinearRegression(uid: String = UID[OpLinearRegression])

    Permalink

Type Members

  1. final type InputFeatures = (FeatureLike[RealNN], FeatureLike[OPVector])

    Permalink

    Input Features type

    Input Features type

    Definition Classes
    OpPipelineStage2OpPipelineStageInputParams
  2. final type OutputFeatures = FeatureLike[Prediction]

    Permalink
    Definition Classes
    OpPipelineStageOpPipelineStageBase

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final val aggregationDepth: IntParam

    Permalink
    Definition Classes
    HasAggregationDepth
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. final def checkInputLength(features: Array[_]): Boolean

    Permalink

    Checks the input length

    Checks the input length

    features

    input features

    returns

    true is input size as expected, false otherwise

    Definition Classes
    OpPipelineStage2InputParams
  8. def checkSerializable: Try[Unit]

    Permalink

    Check if the stage is serializable

    Check if the stage is serializable

    returns

    Failure if not serializable

    Definition Classes
    OpPipelineStageBase
  9. final def clear(param: Param[_]): OpLinearRegression.this.type

    Permalink
    Definition Classes
    Params
  10. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. final def copy(extra: ParamMap): OpLinearRegression.this.type

    Permalink

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    Note: that the convention in spark is to have the uid be a constructor argument, so that copies will share a uid with the original (developers should follow this convention).

    extra

    new parameters want to add to instance

    returns

    a new instance with the same uid

    Definition Classes
    OpPipelineStageBase → Params
  12. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  13. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  14. final val elasticNetParam: DoubleParam

    Permalink
    Definition Classes
    HasElasticNetParam
  15. final val epsilon: DoubleParam

    Permalink
    Definition Classes
    LinearRegressionParams
    Annotations
    @Since( "2.3.0" )
  16. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  18. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  19. def explainParams(): String

    Permalink
    Definition Classes
    Params
  20. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  21. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  22. final val featuresCol: Param[String]

    Permalink
    Definition Classes
    HasFeaturesCol
  23. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  24. def fit(dataset: Dataset[_]): OpPredictorWrapperModel[LinearRegressionModel]

    Permalink

    Function that fits the binary model

    Function that fits the binary model

    Definition Classes
    OpPredictorWrapper → Estimator
  25. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[OpPredictorWrapperModel[LinearRegressionModel]]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  26. def fit(dataset: Dataset[_], paramMap: ParamMap): OpPredictorWrapperModel[LinearRegressionModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  27. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OpPredictorWrapperModel[LinearRegressionModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  28. final val fitIntercept: BooleanParam

    Permalink
    Definition Classes
    HasFitIntercept
  29. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  30. final def getAggregationDepth: Int

    Permalink
    Definition Classes
    HasAggregationDepth
  31. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  32. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  33. final def getElasticNetParam: Double

    Permalink
    Definition Classes
    HasElasticNetParam
  34. def getEpsilon: Double

    Permalink
    Definition Classes
    LinearRegressionParams
    Annotations
    @Since( "2.3.0" )
  35. final def getFeaturesCol: String

    Permalink
    Definition Classes
    HasFeaturesCol
  36. final def getFitIntercept: Boolean

    Permalink
    Definition Classes
    HasFitIntercept
  37. def getInputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control input columns for Spark stage

    Gets names of parameters that control input columns for Spark stage

    Definition Classes
    SparkWrapperParams
  38. final def getInputFeature[T <: FeatureType](i: Int): Option[FeatureLike[T]]

    Permalink

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  39. final def getInputFeatures(): Array[OPFeature]

    Permalink

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  40. final def getInputSchema(): StructType

    Permalink
    Definition Classes
    OpPipelineStageParams
  41. final def getLabelCol: String

    Permalink
    Definition Classes
    HasLabelCol
  42. def getLocalMlStage(): Option[Transformer]

    Permalink

    Method to access the local version of stage being wrapped

    Method to access the local version of stage being wrapped

    returns

    Option of ml leap runtime version of the spark stage after reloading as local

    Definition Classes
    SparkWrapperParams
  43. final def getLoss: String

    Permalink
    Definition Classes
    HasLoss
  44. final def getMaxIter: Int

    Permalink
    Definition Classes
    HasMaxIter
  45. final def getMetadata(): Metadata

    Permalink
    Definition Classes
    OpPipelineStageParams
  46. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  47. def getOutput(): FeatureLike[Prediction]

    Permalink

    Output features that will be created by this stage

    Output features that will be created by this stage

    returns

    feature of type OutputFeatures

    Definition Classes
    HasOut → OpPipelineStageBase
  48. def getOutputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control output columns for Spark stage

    Gets names of parameters that control output columns for Spark stage

    Definition Classes
    SparkWrapperParams
  49. final def getOutputFeatureName: String

    Permalink

    Name of output feature (i.e.

    Name of output feature (i.e. column created by this stage)

    Definition Classes
    OpPipelineStage
  50. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  51. final def getPredictionCol: String

    Permalink
    Definition Classes
    HasPredictionCol
  52. final def getRegParam: Double

    Permalink
    Definition Classes
    HasRegParam
  53. final def getSolver: String

    Permalink
    Definition Classes
    HasSolver
  54. def getSparkMlStage(): Option[LinearRegression]

    Permalink

    Method to access the spark stage being wrapped

    Method to access the spark stage being wrapped

    returns

    Option of spark ml stage

    Definition Classes
    SparkWrapperParams
  55. def getStageSavePath(): Option[String]

    Permalink

    Gets a save path for wrapped spark stage

    Gets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  56. final def getStandardization: Boolean

    Permalink
    Definition Classes
    HasStandardization
  57. final def getTol: Double

    Permalink
    Definition Classes
    HasTol
  58. final def getTransientFeature(i: Int): Option[TransientFeature]

    Permalink

    Gets an input feature at index i

    Gets an input feature at index i

    i

    input index

    returns

    maybe an input feature

    Definition Classes
    InputParams
  59. final def getTransientFeatures(): Array[TransientFeature]

    Permalink

    Gets the input Features

    Gets the input Features

    returns

    input features

    Definition Classes
    InputParams
  60. final def getWeightCol: String

    Permalink
    Definition Classes
    HasWeightCol
  61. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  62. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  63. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  64. final def in1: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn1
  65. final def in2: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn2
  66. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  67. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  68. final def inputAsArray(in: InputFeatures): Array[OPFeature]

    Permalink

    Function to convert InputFeatures to an Array of FeatureLike

    Function to convert InputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStage2InputParams
  69. val inputParam1Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  70. val inputParam2Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  71. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  72. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  73. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  74. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  75. final val labelCol: Param[String]

    Permalink
    Definition Classes
    HasLabelCol
  76. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  77. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  78. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  82. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  83. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  84. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  85. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  86. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  87. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  88. final val loss: Param[String]

    Permalink
    Definition Classes
    LinearRegressionParams → HasLoss
    Annotations
    @Since( "2.3.0" )
  89. final val maxIter: IntParam

    Permalink
    Definition Classes
    HasMaxIter
  90. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  91. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  92. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  93. def onGetMetadata(): Unit

    Permalink

    Function to be called on getMetadata

    Function to be called on getMetadata

    Attributes
    protected
    Definition Classes
    OpPipelineStageParams
  94. def onSetInput(): Unit

    Permalink

    Function to be called on setInput

    Function to be called on setInput

    Attributes
    protected
    Definition Classes
    OpLinearRegressionInputParams
  95. val operationName: String

    Permalink

    Short unique name of the operation this stage performs

    Short unique name of the operation this stage performs

    returns

    operation name

    Definition Classes
    OpPredictorWrapperOpPipelineStageBase
  96. final def outputAsArray(out: OutputFeatures): Array[OPFeature]

    Permalink

    Function to convert OutputFeatures to an Array of FeatureLike

    Function to convert OutputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStageOpPipelineStageBase
  97. def outputFeatureUid: String

    Permalink
    Attributes
    protected[com.salesforce.op]
    Definition Classes
    OpPipelineStage2OpPipelineStage
  98. def outputIsResponse: Boolean

    Permalink

    Should output feature be a response? Yes, if any of the input features are.

    Should output feature be a response? Yes, if any of the input features are.

    returns

    true if the the output feature should be a response

    Definition Classes
    OpPipelineStage
  99. val outputParamName: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  100. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  101. final val predictionCol: Param[String]

    Permalink
    Definition Classes
    HasPredictionCol
  102. val predictor: LinearRegression

    Permalink

    the predictor to wrap

    the predictor to wrap

    Definition Classes
    OpPredictorWrapper
  103. final val regParam: DoubleParam

    Permalink
    Definition Classes
    HasRegParam
  104. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  105. final def set(paramPair: ParamPair[_]): OpLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  106. final def set(param: String, value: Any): OpLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  107. final def set[T](param: Param[T], value: T): OpLinearRegression.this.type

    Permalink
    Definition Classes
    Params
  108. def setAggregationDepth(value: Int): OpLinearRegression.this.type

    Permalink

    Suggested depth for treeAggregate (greater than or equal to 2).

    Suggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2.

  109. final def setDefault(paramPairs: ParamPair[_]*): OpLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  110. final def setDefault[T](param: Param[T], value: T): OpLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  111. def setElasticNetParam(value: Double): OpLinearRegression.this.type

    Permalink

    Set the ElasticNet mixing parameter.

    Set the ElasticNet mixing parameter. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty. For alpha in (0,1), the penalty is a combination of L1 and L2. Default is 0.0 which is an L2 penalty.

  112. def setEpsilon(value: Double): OpLinearRegression.this.type

    Permalink

    The shape parameter to control the amount of robustness.

    The shape parameter to control the amount of robustness. Must be > 1.0. At larger values of epsilon, the huber criterion becomes more similar to least squares regression; for small values of epsilon, the criterion is more similar to L1 regression. Default is 1.35 to get as much robustness as possible while retaining 95% statistical efficiency for normally distributed data. It matches sklearn HuberRegressor and is "M" from A robust hybrid of lasso and ridge regression. Only valid when "loss" is "huber".

  113. def setFitIntercept(value: Boolean): OpLinearRegression.this.type

    Permalink

    Set if we should fit the intercept.

    Set if we should fit the intercept. Default is true.

  114. final def setInput(features: InputFeatures): OpLinearRegression.this.type

    Permalink

    Input features that will be used by the stage

    Input features that will be used by the stage

    returns

    feature of type InputFeatures

    Definition Classes
    OpPipelineStageBase
  115. final def setInputFeatures[S <: OPFeature](features: Array[S]): OpLinearRegression.this.type

    Permalink

    Sets input features

    Sets input features

    S

    feature like type

    features

    array of input features

    returns

    this stage

    Attributes
    protected
    Definition Classes
    InputParams
  116. def setLossType(value: String): OpLinearRegression.this.type

    Permalink

    Set the type of loss function to be optimized.

    Set the type of loss function to be optimized. Supported options: "squaredError" (https://en.wikipedia.org/wiki/Mean_squared_error) and "huber" (https://en.wikipedia.org/wiki/Huber_loss). Default is squaredError.

  117. def setMaxIter(value: Int): OpLinearRegression.this.type

    Permalink

    Set the maximum number of iterations.

    Set the maximum number of iterations. Default is 100.

  118. final def setMetadata(m: Metadata): OpLinearRegression.this.type

    Permalink
    Definition Classes
    OpPipelineStageParams
  119. def setOutputDF(df: DataFrame): Unit

    Permalink
    Definition Classes
    SparkWrapperParams
  120. def setOutputFeatureName(name: String): OpLinearRegression.this.type

    Permalink
    Definition Classes
    OpPipelineStage
  121. def setRegParam(value: Double): OpLinearRegression.this.type

    Permalink

    Set the regularization parameter.

    Set the regularization parameter. Default is 0.0.

  122. def setSolver(value: String): OpLinearRegression.this.type

    Permalink

    Set the solver algorithm used for optimization.

    Set the solver algorithm used for optimization. In case of linear regression, this can be "l-bfgs", "normal" and "auto".

    • "l-bfgs" denotes Limited-memory BFGS which is a limited-memory quasi-Newton optimization method.
    • "normal" denotes using Normal Equation as an analytical solution to the linear regression problem. This solver is limited to LinearRegression.MAX_FEATURES_FOR_NORMAL_SOLVER.
    • "auto" (default) means that the solver algorithm is selected automatically. The Normal Equations solver will be used when possible, but this will automatically fall back to iterative optimization methods when needed.
  123. def setSparkMlStage(stage: Option[LinearRegression]): OpLinearRegression.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    SparkWrapperParams
  124. def setStageSavePath(path: String): OpLinearRegression.this.type

    Permalink

    Sets a save path for wrapped spark stage

    Sets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  125. def setStandardization(value: Boolean): OpLinearRegression.this.type

    Permalink

    Whether to standardize the training features before fitting the model.

    Whether to standardize the training features before fitting the model. The coefficients of models will be always returned on the original scale, so it will be transparent for users. Default is true.

    Note

    With/without standardization, the models should be always converged to the same solution when no regularization is applied. In R's GLMNET package, the default behavior is true as well.

  126. def setTol(value: Double): OpLinearRegression.this.type

    Permalink

    Set the convergence tolerance of iterations.

    Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6.

  127. def setWeightCol(value: String): OpLinearRegression.this.type

    Permalink

    Whether to over-/under-sample training instances according to the given weights in weightCol.

    Whether to over-/under-sample training instances according to the given weights in weightCol. If not set or empty, all instances are treated equally (weight 1.0). Default is not set, so all instances have weight one.

  128. final val solver: Param[String]

    Permalink
    Definition Classes
    LinearRegressionParams → HasSolver
    Annotations
    @Since( "1.6.0" )
  129. final val sparkInputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  130. final val sparkMlStage: SparkStageParam[LinearRegression]

    Permalink
    Definition Classes
    SparkWrapperParams
  131. final val sparkOutputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  132. final def stageName: String

    Permalink

    Stage unique name consisting of the stage operation name and uid

    Stage unique name consisting of the stage operation name and uid

    returns

    stage name

    Definition Classes
    OpPipelineStageBase
  133. final val standardization: BooleanParam

    Permalink
    Definition Classes
    HasStandardization
  134. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  135. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  136. final val tol: DoubleParam

    Permalink
    Definition Classes
    HasTol
  137. final def transformSchema(schema: StructType): StructType

    Permalink

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    schema

    schema of the input data frame

    returns

    a new schema with the output features added

    Definition Classes
    OpPipelineStageBase
  138. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  139. implicit val tti1: scala.reflect.api.JavaUniverse.TypeTag[RealNN]

    Permalink
    Definition Classes
    OpPredictorWrapper
  140. implicit val tti2: scala.reflect.api.JavaUniverse.TypeTag[OPVector]

    Permalink
    Definition Classes
    OpPredictorWrapper
  141. implicit val tto: scala.reflect.api.JavaUniverse.TypeTag[Prediction]

    Permalink

    Type tag of the output

    Type tag of the output

    Definition Classes
    OpPredictorWrapper → HasOut
  142. implicit val ttov: scala.reflect.api.JavaUniverse.TypeTag[Map[String, Double]]

    Permalink

    Type tag of the output value

    Type tag of the output value

    Definition Classes
    OpPredictorWrapper → HasOut
  143. val uid: String

    Permalink

    stage uid

    stage uid

    Definition Classes
    OpPredictorWrapper → Identifiable
  144. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    LinearRegressionParams → PredictorParams
  145. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  146. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  147. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  148. final val weightCol: Param[String]

    Permalink
    Definition Classes
    HasWeightCol
  149. final def write: MLWriter

    Permalink
    Definition Classes
    OpPipelineStageBase → MLWritable

Inherited from OpLinearRegressionParams

Inherited from LinearRegressionParams

Inherited from HasLoss

Inherited from HasAggregationDepth

Inherited from HasSolver

Inherited from HasWeightCol

Inherited from HasStandardization

Inherited from HasFitIntercept

Inherited from HasTol

Inherited from HasMaxIter

Inherited from HasElasticNetParam

Inherited from HasRegParam

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from OpPredictorWrapper[LinearRegression, LinearRegressionModel]

Inherited from SparkWrapperParams[LinearRegression]

Inherited from HasOut[Prediction]

Inherited from HasIn2

Inherited from HasIn1

Inherited from OpPipelineStage[Prediction]

Inherited from OpPipelineStageBase

Inherited from MLWritable

Inherited from OpPipelineStageParams

Inherited from InputParams

Inherited from Estimator[OpPredictorWrapperModel[LinearRegressionModel]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

expertParam

expertSetParam

setParam

Ungrouped