Class

com.salesforce.op.stages.impl.regression

OpRandomForestRegressor

Related Doc: package regression

Permalink

class OpRandomForestRegressor extends OpPredictorWrapper[RandomForestRegressor, RandomForestRegressionModel] with OpRandomForestRegressorParams

Wrapper around sparj Random Forest Regressor org.apache.spark.ml.regression.RandomForestRegressor

Linear Supertypes
OpRandomForestRegressorParams, RandomForestRegressorParams, TreeRegressorParams, RandomForestParams, TreeEnsembleParams, DecisionTreeParams, HasSeed, HasCheckpointInterval, PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, OpPredictorWrapper[RandomForestRegressor, RandomForestRegressionModel], SparkWrapperParams[RandomForestRegressor], OpPipelineStage2[RealNN, OPVector, Prediction], HasOut[Prediction], HasIn2, HasIn1, OpPipelineStage[Prediction], OpPipelineStageBase, MLWritable, OpPipelineStageParams, InputParams, Estimator[OpPredictorWrapperModel[RandomForestRegressionModel]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OpRandomForestRegressor
  2. OpRandomForestRegressorParams
  3. RandomForestRegressorParams
  4. TreeRegressorParams
  5. RandomForestParams
  6. TreeEnsembleParams
  7. DecisionTreeParams
  8. HasSeed
  9. HasCheckpointInterval
  10. PredictorParams
  11. HasPredictionCol
  12. HasFeaturesCol
  13. HasLabelCol
  14. OpPredictorWrapper
  15. SparkWrapperParams
  16. OpPipelineStage2
  17. HasOut
  18. HasIn2
  19. HasIn1
  20. OpPipelineStage
  21. OpPipelineStageBase
  22. MLWritable
  23. OpPipelineStageParams
  24. InputParams
  25. Estimator
  26. PipelineStage
  27. Logging
  28. Params
  29. Serializable
  30. Serializable
  31. Identifiable
  32. AnyRef
  33. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OpRandomForestRegressor(uid: String = UID[OpRandomForestRegressor])

    Permalink

    uid

    stage uid

Type Members

  1. final type InputFeatures = (FeatureLike[RealNN], FeatureLike[OPVector])

    Permalink

    Input Features type

    Input Features type

    Definition Classes
    OpPipelineStage2OpPipelineStageInputParams
  2. final type OutputFeatures = FeatureLike[Prediction]

    Permalink
    Definition Classes
    OpPipelineStageOpPipelineStageBase

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final val cacheNodeIds: BooleanParam

    Permalink
    Definition Classes
    DecisionTreeParams
  7. final def checkInputLength(features: Array[_]): Boolean

    Permalink

    Checks the input length

    Checks the input length

    features

    input features

    returns

    true is input size as expected, false otherwise

    Definition Classes
    OpPipelineStage2InputParams
  8. def checkSerializable: Try[Unit]

    Permalink

    Check if the stage is serializable

    Check if the stage is serializable

    returns

    Failure if not serializable

    Definition Classes
    OpPipelineStageBase
  9. final val checkpointInterval: IntParam

    Permalink
    Definition Classes
    HasCheckpointInterval
  10. final def clear(param: Param[_]): OpRandomForestRegressor.this.type

    Permalink
    Definition Classes
    Params
  11. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. final def copy(extra: ParamMap): OpRandomForestRegressor.this.type

    Permalink

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    This method is used to make a copy of the instance with new parameters in several methods in spark internals Default will find the constructor and make a copy for any class (AS LONG AS ALL CONSTRUCTOR PARAMS ARE VALS, this is why type tags are written as implicit vals in base classes).

    Note: that the convention in spark is to have the uid be a constructor argument, so that copies will share a uid with the original (developers should follow this convention).

    extra

    new parameters want to add to instance

    returns

    a new instance with the same uid

    Definition Classes
    OpPipelineStageBase → Params
  13. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  14. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  15. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  17. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  18. def explainParams(): String

    Permalink
    Definition Classes
    Params
  19. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  20. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  21. final val featureSubsetStrategy: Param[String]

    Permalink
    Definition Classes
    TreeEnsembleParams
  22. final val featuresCol: Param[String]

    Permalink
    Definition Classes
    HasFeaturesCol
  23. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  24. def fit(dataset: Dataset[_]): OpPredictorWrapperModel[RandomForestRegressionModel]

    Permalink

    Function that fits the binary model

    Function that fits the binary model

    Definition Classes
    OpPredictorWrapper → Estimator
  25. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[OpPredictorWrapperModel[RandomForestRegressionModel]]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  26. def fit(dataset: Dataset[_], paramMap: ParamMap): OpPredictorWrapperModel[RandomForestRegressionModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  27. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OpPredictorWrapperModel[RandomForestRegressionModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  28. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  29. final def getCacheNodeIds: Boolean

    Permalink
    Definition Classes
    DecisionTreeParams
  30. final def getCheckpointInterval: Int

    Permalink
    Definition Classes
    HasCheckpointInterval
  31. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  32. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  33. final def getFeatureSubsetStrategy: String

    Permalink
    Definition Classes
    TreeEnsembleParams
  34. final def getFeaturesCol: String

    Permalink
    Definition Classes
    HasFeaturesCol
  35. final def getImpurity: String

    Permalink
    Definition Classes
    TreeRegressorParams
  36. def getInputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control input columns for Spark stage

    Gets names of parameters that control input columns for Spark stage

    Definition Classes
    SparkWrapperParams
  37. final def getInputFeature[T <: FeatureType](i: Int): Option[FeatureLike[T]]

    Permalink

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    Gets an input feature Note: this method IS NOT safe to use outside the driver, please use getTransientFeature method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  38. final def getInputFeatures(): Array[OPFeature]

    Permalink

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    Gets the input features Note: this method IS NOT safe to use outside the driver, please use getTransientFeatures method instead

    returns

    array of features

    Definition Classes
    InputParams
    Exceptions thrown

    NoSuchElementException if the features are not set

    RuntimeException in case one of the features is null

  39. final def getInputSchema(): StructType

    Permalink
    Definition Classes
    OpPipelineStageParams
  40. final def getLabelCol: String

    Permalink
    Definition Classes
    HasLabelCol
  41. def getLocalMlStage(): Option[Transformer]

    Permalink

    Method to access the local version of stage being wrapped

    Method to access the local version of stage being wrapped

    returns

    Option of ml leap runtime version of the spark stage after reloading as local

    Definition Classes
    SparkWrapperParams
  42. final def getMaxBins: Int

    Permalink
    Definition Classes
    DecisionTreeParams
  43. final def getMaxDepth: Int

    Permalink
    Definition Classes
    DecisionTreeParams
  44. final def getMaxMemoryInMB: Int

    Permalink
    Definition Classes
    DecisionTreeParams
  45. final def getMetadata(): Metadata

    Permalink
    Definition Classes
    OpPipelineStageParams
  46. final def getMinInfoGain: Double

    Permalink
    Definition Classes
    DecisionTreeParams
  47. final def getMinInstancesPerNode: Int

    Permalink
    Definition Classes
    DecisionTreeParams
  48. final def getNumTrees: Int

    Permalink
    Definition Classes
    RandomForestParams
  49. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  50. def getOutput(): FeatureLike[Prediction]

    Permalink

    Output features that will be created by this stage

    Output features that will be created by this stage

    returns

    feature of type OutputFeatures

    Definition Classes
    HasOut → OpPipelineStageBase
  51. def getOutputColParamNames(): Array[String]

    Permalink

    Gets names of parameters that control output columns for Spark stage

    Gets names of parameters that control output columns for Spark stage

    Definition Classes
    SparkWrapperParams
  52. final def getOutputFeatureName: String

    Permalink

    Name of output feature (i.e.

    Name of output feature (i.e. column created by this stage)

    Definition Classes
    OpPipelineStage
  53. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  54. final def getPredictionCol: String

    Permalink
    Definition Classes
    HasPredictionCol
  55. final def getSeed: Long

    Permalink
    Definition Classes
    HasSeed
  56. def getSparkMlStage(): Option[RandomForestRegressor]

    Permalink

    Method to access the spark stage being wrapped

    Method to access the spark stage being wrapped

    returns

    Option of spark ml stage

    Definition Classes
    SparkWrapperParams
  57. def getStageSavePath(): Option[String]

    Permalink

    Gets a save path for wrapped spark stage

    Gets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  58. final def getSubsamplingRate: Double

    Permalink
    Definition Classes
    TreeEnsembleParams
  59. final def getTransientFeature(i: Int): Option[TransientFeature]

    Permalink

    Gets an input feature at index i

    Gets an input feature at index i

    i

    input index

    returns

    maybe an input feature

    Definition Classes
    InputParams
  60. final def getTransientFeatures(): Array[TransientFeature]

    Permalink

    Gets the input Features

    Gets the input Features

    returns

    input features

    Definition Classes
    InputParams
  61. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  62. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  63. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  64. final val impurity: Param[String]

    Permalink
    Definition Classes
    TreeRegressorParams
  65. final def in1: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn1
  66. final def in2: TransientFeature

    Permalink
    Attributes
    protected
    Definition Classes
    HasIn2
  67. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  68. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  69. final def inputAsArray(in: InputFeatures): Array[OPFeature]

    Permalink

    Function to convert InputFeatures to an Array of FeatureLike

    Function to convert InputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStage2InputParams
  70. val inputParam1Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  71. val inputParam2Name: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  72. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  73. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  74. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  75. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. final val labelCol: Param[String]

    Permalink
    Definition Classes
    HasLabelCol
  77. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  78. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  82. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  83. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  84. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  85. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  86. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  87. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  88. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  89. final val maxBins: IntParam

    Permalink
    Definition Classes
    DecisionTreeParams
  90. final val maxDepth: IntParam

    Permalink
    Definition Classes
    DecisionTreeParams
  91. final val maxMemoryInMB: IntParam

    Permalink
    Definition Classes
    DecisionTreeParams
  92. final val minInfoGain: DoubleParam

    Permalink
    Definition Classes
    DecisionTreeParams
  93. final val minInstancesPerNode: IntParam

    Permalink
    Definition Classes
    DecisionTreeParams
  94. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  95. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  96. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  97. final val numTrees: IntParam

    Permalink
    Definition Classes
    RandomForestParams
  98. def onGetMetadata(): Unit

    Permalink

    Function to be called on getMetadata

    Function to be called on getMetadata

    Attributes
    protected
    Definition Classes
    OpPipelineStageParams
  99. def onSetInput(): Unit

    Permalink

    Function to be called on setInput

    Function to be called on setInput

    Attributes
    protected
    Definition Classes
    OpRandomForestRegressorInputParams
  100. val operationName: String

    Permalink

    Short unique name of the operation this stage performs

    Short unique name of the operation this stage performs

    returns

    operation name

    Definition Classes
    OpPredictorWrapperOpPipelineStageBase
  101. final def outputAsArray(out: OutputFeatures): Array[OPFeature]

    Permalink

    Function to convert OutputFeatures to an Array of FeatureLike

    Function to convert OutputFeatures to an Array of FeatureLike

    returns

    an Array of FeatureLike

    Definition Classes
    OpPipelineStageOpPipelineStageBase
  102. def outputFeatureUid: String

    Permalink
    Attributes
    protected[com.salesforce.op]
    Definition Classes
    OpPipelineStage2OpPipelineStage
  103. def outputIsResponse: Boolean

    Permalink

    Should output feature be a response? Yes, if any of the input features are.

    Should output feature be a response? Yes, if any of the input features are.

    returns

    true if the the output feature should be a response

    Definition Classes
    OpPipelineStage
  104. val outputParamName: String

    Permalink
    Definition Classes
    OpPredictorWrapper
  105. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  106. final val predictionCol: Param[String]

    Permalink
    Definition Classes
    HasPredictionCol
  107. val predictor: RandomForestRegressor

    Permalink

    the predictor to wrap

    the predictor to wrap

    Definition Classes
    OpPredictorWrapper
  108. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  109. final val seed: LongParam

    Permalink
    Definition Classes
    HasSeed
  110. final def set(paramPair: ParamPair[_]): OpRandomForestRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  111. final def set(param: String, value: Any): OpRandomForestRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  112. final def set[T](param: Param[T], value: T): OpRandomForestRegressor.this.type

    Permalink
    Definition Classes
    Params
  113. def setCacheNodeIds(value: Boolean): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → DecisionTreeParams
  114. def setCheckpointInterval(value: Int): OpRandomForestRegressor.this.type

    Permalink

    Specifies how often to checkpoint the cached node IDs.

    Specifies how often to checkpoint the cached node IDs. E.g. 10 means that the cache will get checkpointed every 10 iterations. This is only used if cacheNodeIds is true and if the checkpoint directory is set in org.apache.spark.SparkContext. Must be at least 1. (default = 10)

    Definition Classes
    OpRandomForestRegressor → DecisionTreeParams
  115. final def setDefault(paramPairs: ParamPair[_]*): OpRandomForestRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  116. final def setDefault[T](param: Param[T], value: T): OpRandomForestRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  117. def setFeatureSubsetStrategy(value: String): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → TreeEnsembleParams
  118. def setImpurity(value: String): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → TreeRegressorParams
  119. final def setInput(features: InputFeatures): OpRandomForestRegressor.this.type

    Permalink

    Input features that will be used by the stage

    Input features that will be used by the stage

    returns

    feature of type InputFeatures

    Definition Classes
    OpPipelineStageBase
  120. final def setInputFeatures[S <: OPFeature](features: Array[S]): OpRandomForestRegressor.this.type

    Permalink

    Sets input features

    Sets input features

    S

    feature like type

    features

    array of input features

    returns

    this stage

    Attributes
    protected
    Definition Classes
    InputParams
  121. def setMaxBins(value: Int): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → DecisionTreeParams
  122. def setMaxDepth(value: Int): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → DecisionTreeParams
  123. def setMaxMemoryInMB(value: Int): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → DecisionTreeParams
  124. final def setMetadata(m: Metadata): OpRandomForestRegressor.this.type

    Permalink
    Definition Classes
    OpPipelineStageParams
  125. def setMinInfoGain(value: Double): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → DecisionTreeParams
  126. def setMinInstancesPerNode(value: Int): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → DecisionTreeParams
  127. def setNumTrees(value: Int): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → RandomForestParams
  128. def setOutputDF(df: DataFrame): Unit

    Permalink
    Definition Classes
    SparkWrapperParams
  129. def setOutputFeatureName(name: String): OpRandomForestRegressor.this.type

    Permalink
    Definition Classes
    OpPipelineStage
  130. def setSeed(value: Long): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → DecisionTreeParams
  131. def setSparkMlStage(stage: Option[RandomForestRegressor]): OpRandomForestRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    SparkWrapperParams
  132. def setStageSavePath(path: String): OpRandomForestRegressor.this.type

    Permalink

    Sets a save path for wrapped spark stage

    Sets a save path for wrapped spark stage

    Definition Classes
    SparkWrapperParams
  133. def setSubsamplingRate(value: Double): OpRandomForestRegressor.this.type

    Permalink

    Definition Classes
    OpRandomForestRegressor → TreeEnsembleParams
  134. final val sparkInputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  135. final val sparkMlStage: SparkStageParam[RandomForestRegressor]

    Permalink
    Definition Classes
    SparkWrapperParams
  136. final val sparkOutputColParamNames: StringArrayParam

    Permalink
    Definition Classes
    SparkWrapperParams
  137. final def stageName: String

    Permalink

    Stage unique name consisting of the stage operation name and uid

    Stage unique name consisting of the stage operation name and uid

    returns

    stage name

    Definition Classes
    OpPipelineStageBase
  138. final val subsamplingRate: DoubleParam

    Permalink
    Definition Classes
    TreeEnsembleParams
  139. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  140. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  141. final def transformSchema(schema: StructType): StructType

    Permalink

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    This function translates the input and output features into spark schema checks and changes that will occur on the underlying data frame

    schema

    schema of the input data frame

    returns

    a new schema with the output features added

    Definition Classes
    OpPipelineStageBase
  142. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  143. implicit val tti1: scala.reflect.api.JavaUniverse.TypeTag[RealNN]

    Permalink
    Definition Classes
    OpPredictorWrapper
  144. implicit val tti2: scala.reflect.api.JavaUniverse.TypeTag[OPVector]

    Permalink
    Definition Classes
    OpPredictorWrapper
  145. implicit val tto: scala.reflect.api.JavaUniverse.TypeTag[Prediction]

    Permalink

    Type tag of the output

    Type tag of the output

    Definition Classes
    OpPredictorWrapper → HasOut
  146. implicit val ttov: scala.reflect.api.JavaUniverse.TypeTag[Map[String, Double]]

    Permalink

    Type tag of the output value

    Type tag of the output value

    Definition Classes
    OpPredictorWrapper → HasOut
  147. val uid: String

    Permalink

    stage uid

    stage uid

    Definition Classes
    OpPredictorWrapper → Identifiable
  148. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PredictorParams
  149. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  150. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  151. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  152. final def write: MLWriter

    Permalink
    Definition Classes
    OpPipelineStageBase → MLWritable

Inherited from RandomForestRegressorParams

Inherited from TreeRegressorParams

Inherited from RandomForestParams

Inherited from TreeEnsembleParams

Inherited from DecisionTreeParams

Inherited from HasSeed

Inherited from HasCheckpointInterval

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from OpPredictorWrapper[RandomForestRegressor, RandomForestRegressionModel]

Inherited from SparkWrapperParams[RandomForestRegressor]

Inherited from HasOut[Prediction]

Inherited from HasIn2

Inherited from HasIn1

Inherited from OpPipelineStage[Prediction]

Inherited from OpPipelineStageBase

Inherited from MLWritable

Inherited from OpPipelineStageParams

Inherited from InputParams

Inherited from Estimator[OpPredictorWrapperModel[RandomForestRegressionModel]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

expertSetParam

setParam

Ungrouped